【Linux】进程信号万字详解(下)

news2025/1/12 6:16:17

🎇Linux:


  • 博客主页:一起去看日落吗
  • 分享博主的在Linux中学习到的知识和遇到的问题
  • 博主的能力有限,出现错误希望大家不吝赐教
  • 分享给大家一句我很喜欢的话: 看似不起波澜的日复一日,一定会在某一天让你看见坚持的意义,祝我们都能在鸡零狗碎里找到闪闪的快乐🌿🌞🐾。

在这里插入图片描述

✨ ⭐️ 🌟 💫


目录

  • ✨1. 阻塞信号
    • 💫1.1 信号其他相关概念
    • 💫1.2 在内核中的表示
    • 💫1.3 sigset_t
    • 💫1.4 信号集操作函数
    • 💫1.5 sigprocmask
    • 💫1.6 sigpending
  • ✨2. 捕捉信号
    • 💫2.1 内核空间与用户空间
    • 💫2.2 内核态与用户态
    • 💫2.3 内核如何实现信号的捕捉
    • 💫2.4 sigaction
  • ✨3. 可重入函数
  • ✨4. volatile
  • ✨5. volatile

✨1. 阻塞信号

💫1.1 信号其他相关概念

  • 实际执行信号的处理动作,称为信号递达(Delivery)。
  • 信号从产生到递达之间的状态,称为信号未决(pending)。
  • 进程可以选择阻塞(Block)某个信号。
  • 被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作。
  • 需要注意的是,阻塞和忽略是不同的,只要信号被阻塞就不会递达,而忽略是在递达之后的一种处理动作。

💫1.2 在内核中的表示

信号在内核中的表示示意图如下:

在这里插入图片描述

  • 每个信号都有两个标志位分别表示阻塞(block)和未决(pending),还有一个函数指针表示处理动作。信号产生时,内核在进程控制块中设置该信号的未决标志,直到信号递达才清除该标志。在上图的例子中,SIGHUP信号未阻塞也未产生过,当它递达时执行默认处理动作。
  • SIGINT信号产生过,但正在被阻塞,所以暂时不能递达。虽然它的处理动作是忽略,但在没有解除阻塞之前不能忽略这个信号,因为进程仍有机会改变处理动作之后再解除阻塞。
  • SIGQUIT信号未产生过,一旦产生SIGQUIT信号将被阻塞,它的处理动作是用户自定义函数sighandler。如果在进程解除对某信号的阻塞之前这种信号产生过多次,将如何处理?POSIX.1允许系统递送该信号一次或多次。Linux是这样实现的:常规信号在递达之前产生多次只计一次,而实时信号在递达之前产生多次可以依次放在一个队列里。这里只讨论普通信号。

总结:

  • 在block位图中,比特位的位置代表某一个信号,比特位的内容代表该信号是否被阻塞。
  • 在pending位图中,比特位的位置代表某一个信号,比特位的内容代表是否收到该信号。
  • handler表本质上是一个函数指针数组,数组的下标代表某一个信号,数组的内容代表该信号递达时的处理动作,处理动作包括默认、忽略以及自定义。
  • block、pending和handler这三张表的每一个位置是一一对应的。

💫1.3 sigset_t

根据信号在内核中的表示方法,每个信号的未决标志只有一个比特位,非0即1,如果不记录该信号产生了多少次,那么阻塞标志也只有一个比特位。

因此,未决和阻塞标志可以用相同的数据类型sigset_t来存储。在我当前的云服务中,sigset_t类型的定义如下:(不同操作系统实现sigset_t的方案可能不同

#define _SIGSET_NWORDS (1024 / (8 * sizeof (unsigned long int)))
typedef struct
{
	unsigned long int __val[_SIGSET_NWORDS];
} __sigset_t;

typedef __sigset_t sigset_t;

sigset_t称为信号集,这个类型可以表示每个信号的“有效”或“无效”状态。

  • 在阻塞信号集中“有效”和“无效”的含义是该信号是否被阻塞。
  • 在未决信号集中“有效”和“无效”的含义是该信号是否处于未决状态。

阻塞信号集也叫做当前进程的信号屏蔽字(Signal Mask),这里的“屏蔽”应该理解为阻塞而不是忽略。


💫1.4 信号集操作函数

sigset_t类型对于每种信号用一个bit表示“有效”或“无效”,至于这个类型内部如何存储这些bit则依赖于系统的实现,从使用者的角度是不必关心的,使用者只能调用以下函数来操作sigset_t变量,而不应该对它的内部数据做任何解释,比如用printf直接打印sigset_t变量是没有意义的。

#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signum);

int sigdelset(sigset_t *set, int signum);

int sigismember(const sigset_t *set, int signum);  

函数解释:

  • sigemptyset函数:初始化set所指向的信号集,使其中所有信号的对应bit清零,表示该信号集不包含任何有效信号。
  • sigfillset函数:初始化set所指向的信号集,使其中所有信号的对应bit置位,表示该信号集的有效信号包括系统支持的所有信号。
  • sigaddset函数:在set所指向的信号集中添加某种有效信号。
  • sigdelset函数:在set所指向的信号集中删除某种有效信号。
  • sigemptyset、sigfillset、sigaddset和sigdelset函数都是成功返回0,出错返回-1。
  • sigismember函数:判断在set所指向的信号集中是否包含某种信号,若包含则返回1,不包含则返回0,调用失败返回-1。

注意: 在使用sigset_t类型的变量之前,一定要调用sigemptyset或sigfillset做初始化,使信号处于确定的状态。

#include <stdio.h>
#include <signal.h>

int main()
{
	sigset_t s; //用户空间定义的变量

	sigemptyset(&s);

	sigfillset(&s);

	sigaddset(&s, SIGINT);

	sigdelset(&s, SIGINT);

	sigismember(&s, SIGINT);
	return 0;
}

代码中定义的sigset_t类型的变量s,与我们平常定义的变量一样都是在用户空间定义的变量,所以后面我们用信号集操作函数对变量s的操作实际上只是对用户空间的变量s做了修改,并不会影响进程的任何行为。因此,我们还需要通过系统调用,才能将变量s的数据设置进操作系统。


💫1.5 sigprocmask

sigprocmask函数可以用于读取或更改进程的信号屏蔽字(阻塞信号集),该函数的函数原型如下:

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

参数说明:

  • 如果oset是非空指针,则读取进程当前的信号屏蔽字通过oset参数传出。
  • 如果set是非空指针,则更改进程的信号屏蔽字,参数how指示如何更改。
  • 如果oset和set都是非空指针,则先将原来的信号屏蔽字备份到oset里,然后根据set和how参数更改信号屏蔽字。

假设当前的信号屏蔽字为mask,下表说明了how参数的可选值及其含义:

选项含义
SIG_BLOCKset包含了我们希望添加到当前信号屏蔽字的信号,相当于mask=mask|set
SIG_UNBLOCKset包含了我们希望从当前信号屏蔽字中解除阻塞的信号,相当于mask=mask|~set
SIG_SETMASK设置当前信号屏蔽字为set所指向的值,相当于mask=set

返回值说明:sigprocmask函数调用成功返回0,出错返回-1。

注意: 如果调用sigprocmask解除了对当前若干个未决信号的阻塞,则在sigprocmask函数返回前,至少将其中一个信号递达。


💫1.6 sigpending

sigpending函数可以用于读取进程的未决信号集,该函数的函数原型如下:

int sigpending(sigset_t *set);

sigpending函数读取当前进程的未决信号集,并通过set参数传出。该函数调用成功返回0,出错返回-1。

下面我们来做一个简单的实验

  1. 先用上述的函数将2号信号进行屏蔽(阻塞)。
  2. 使用kill命令或组合按键向进程发送2号信号。
  3. 此时2号信号会一直被阻塞,并一直处于pending(未决)状态。
  4. 使用sigpending函数获取当前进程的pending信号集进行验证。
#include <stdio.h>
#include <iostream>
#include <unistd.h>
#include <signal.h>

using namespace std

void printPending(sigset_t *pending)
{
	int i = 1;
	for (i = 1; i <= 31; i++){
		if (sigismember(pending, i)){
			printf("1 ");
		}
		else{
			printf("0 ");
		}
	}
	printf("\n");
}
int main()
{
	sigset_t set, oset;
	sigemptyset(&set);
	sigemptyset(&oset);

	sigaddset(&set, 2); //SIGINT
	sigprocmask(SIG_SETMASK, &set, &oset); //阻塞2号信号

	sigset_t pending;
	sigemptyset(&pending);

	while (1){
		sigpending(&pending); //获取pending
		printPending(&pending); //打印pending位图(1表示未决)
		sleep(1);
	}
	return 0;
}

可以看到,程序刚刚运行时,因为没有收到任何信号,所以此时该进程的pending表一直是全0,而当我们使用kill命令向该进程发送2号信号后,由于2号信号是阻塞的,因此2号信号一直处于未决状态,所以我们看到pending表中的第二个数字一直是1。

在这里插入图片描述

为了看到2号信号递达后pending表的变化,我们可以设置一段时间后,自动解除2号信号的阻塞状态,解除2号信号的阻塞状态后2号信号就会立即被递达。因为2号信号的默认处理动作是终止进程,所以为了看到2号信号递达后的pending表,我们可以将2号信号进行捕捉,让2号信号递达时执行我们所给的自定义动作。

#include <stdio.h>
#include <iostream>
#include <unistd.h>
#include <signal.h>


void printPending(sigset_t *pending)
{
	int i = 1;
	for (i = 1; i <= 31; i++){
		if (sigismember(pending, i)){
			printf("1 ");
		}
		else{
			printf("0 ");
		}
	}
	printf("\n");
}
void handler(int signo)
{
	printf("handler signo:%d\n", signo);
}
int main()
{
	signal(2, handler);
	sigset_t set, oset;
	sigemptyset(&set);
	sigemptyset(&oset);

	sigaddset(&set, 2); //SIGINT
	sigprocmask(SIG_SETMASK, &set, &oset); //阻塞2号信号

	sigset_t pending;
	sigemptyset(&pending);

	int count = 0;
	while (1){
		sigpending(&pending); //获取pending
		printPending(&pending); //打印pending位图(1表示未决)
		sleep(1);
		count++;
		if (count == 20){
			sigprocmask(SIG_SETMASK, &oset, NULL); //恢复曾经的信号屏蔽字
			printf("恢复信号屏蔽字\n");
		}
	}
	return 0;
}

此时就可以看到,进程收到2号信号后,该信号在一段时间内处于未决状态,当解除2号信号的屏蔽后,2号信号就会立即递达,执行我们所给的自定义动作,而此时的pending表也变回了全0。

在这里插入图片描述

在解除2号信号后,2号信号的自定义动作是在打印“恢复信号屏蔽字”之前执行的。因为如果调用sigprocmask解除对当前若干个未决信号的阻塞,则在sigprocmask函数返回前,至少将其中一个信号递达。


✨2. 捕捉信号

💫2.1 内核空间与用户空间

每一个进程都有自己的进程地址空间,该进程地址空间由内核空间和用户空间组成:

  • 用户所写的代码和数据位于用户空间,通过用户级页表与物理内存之间建立映射关系。
  • 内核空间存储的实际上是操作系统代码和数据,通过内核级页表与物理内存之间建立映射关系。

内核级页表是一个全局的页表,它用来维护操作系统的代码与进程之间的关系。因此,在每个进程的进程地址空间中,用户空间是属于当前进程的,每个进程看到的代码和数据是完全不同的,但内核空间所存放的都是操作系统的代码和数据,所有进程看到的都是一样的内容。

在这里插入图片描述
需要注意的是,虽然每个进程都能够看到操作系统,但并不意味着每个进程都能够随时对其进行访问。

  • 如何理解进程切换?
  1. 在当前进程的进程地址空间中的内核空间,找到操作系统的代码和数据。
  2. 执行操作系统的代码,将当前进程的代码和数据剥离下来,并换上另一个进程的代码和数据。

注意: 当你访问用户空间时你必须处于用户态,当你访问内核空间时你必须处于内核态。


💫2.2 内核态与用户态

内核态与用户态:

  • 内核态通常用来执行操作系统的代码,是一种权限非常高的状态。
  • 用户态是一种用来执行普通用户代码的状态,是一种受监管的普通状态。

进程收到信号之后,并不是立即处理信号,而是在合适的时候,从内核态切换回用户态的时候。

内核态和用户态之间是进行如何切换的?

从用户态切换为内核态通常有如下几种情况:

  • 需要进行系统调用时。
  • 当前进程的时间片到了,导致进程切换。
  • 产生异常、中断、陷阱等。

与之相对应,从内核态切换为用户态有如下几种情况:

  • 系统调用返回时。
  • 进程切换完毕。
  • 异常、中断、陷阱等处理完毕。

其中,由用户态切换为内核态我们称之为陷入内核。每当我们需要陷入内核的时,本质上是因为我们需要执行操作系统的代码,比如系统调用函数是由操作系统实现的,我们要进行系统调用就必须先由用户态切换为内核态。


💫2.3 内核如何实现信号的捕捉

我们在执行主控制流程的时候,可能因为某些情况而陷入内核,当内核处理完毕准备返回用户态时,就需要进行信号pending的检查。(此时仍处于内核态,有权力查看当前进程的pending位图)

在查看pending位图时,如果发现有未决信号,并且该信号没有被阻塞,那么此时就需要该信号进行处理。

如果待处理信号的处理动作是默认或者忽略,则执行该信号的处理动作后清除对应的pending标志位,如果没有新的信号要递达,就直接返回用户态,从主控制流程中上次被中断的地方继续向下执行即可。

但如果待处理信号是自定义捕捉的,即该信号的处理动作是由用户提供的,那么处理该信号时就需要先返回用户态执行对应的自定义处理动作,执行完后再通过特殊的系统调用sigreturn再次陷入内核并清除对应的pending标志位,如果没有新的信号要递达,就直接返回用户态,继续执行主控制流程的代码。

在这里插入图片描述

注意: sighandler和main函数使用不同的堆栈空间,它们之间不存在调用和被调用的关系,是两个独立的控制流程。

当待处理信号是自定义捕捉时的情况比较复杂,可以借助无穷进行记忆:

在这里插入图片描述
其中,该图形与直线有几个交点就代表在这期间有几次状态切换,而箭头的方向就代表着此次状态切换的方向,图形中间的圆点就代表着检查pending表。

当识别到信号的处理动作是自定义时,能直接在内核态执行用户空间的代码吗?

理论上来说是可以的,因为内核态是一种权限非常高的状态,但是绝对不能这样设计。

如果允许在内核态直接执行用户空间的代码,那么用户就可以在代码中设计一些非法操作,比如清空数据库等,虽然在用户态时没有足够的权限做到清空数据库,但是如果是在内核态时执行了这种非法代码,那么数据库就真的被清空了,因为内核态是有足够权限清空数据库的。

也就是说,不能让操作系统直接去执行用户的代码,因为操作系统无法保证用户的代码是合法代码,即操作系统不信任任何用户。


💫2.4 sigaction

捕捉信号除了用前面用过的signal函数之外,我们还可以使用sigaction函数对信号进行捕捉,sigaction函数的函数原型如下:

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);

sigaction函数可以读取和修改与指定信号相关联的处理动作,该函数调用成功返回0,出错返回-1。

参数说明:

  • signum代表指定信号的编号。
  • 若act指针非空,则根据act修改该信号的处理动作。
  • 若oldact指针非空,则通过oldact传出该信号原来的处理动作。

其中,参数act和oldact都是结构体指针变量,该结构体的定义如下:

struct sigaction {
	void(*sa_handler)(int);
	void(*sa_sigaction)(int, siginfo_t *, void *);
	sigset_t   sa_mask;
	int        sa_flags;
	void(*sa_restorer)(void);
};

结构体的第一个成员sa_handler:

  • 将sa_handler赋值为常数SIG_IGN传给sigaction函数,表示忽略信号。
  • 将sa_handler赋值为常数SIG_DFL传给sigaction函数,表示执行系统默认动作。
  • 将sa_handler赋值为一个函数指针,表示用自定义函数捕捉信号,或者说向内核注册了一个信号处理函数。

所注册的信号处理函数的返回值为void,参数为int,通过参数可以得知当前信号的编号,这样就可以用同一个函数处理多种信号。显然这是一个回调函数,不是被main函数调用,而是被系统所调用。

结构体的第二个成员sa_sigaction:

  • sa_sigaction是实时信号的处理函数。

结构体的第三个成员sa_mask:

首先需要说明的是,当某个信号的处理函数被调用,内核自动将当前信号加入进程的信号屏蔽字,当信号处理函数返回时自动恢复原来的信号屏蔽字,这样就保证了在处理某个信号时,如果这种信号再次产生,那么它会被阻塞到当前处理结束为止。

结构体的第四个成员sa_flags:

  • sa_flags字段包含一些选项,这里直接将sa_flags设置为0即可。

结构体的第五个成员sa_restorer:

  • 该参数没有使用。

下面我们用sigaction函数对2号信号进行了捕捉,将2号信号的处理动作改为了自定义的打印动作,并在执行一次自定义动作后将2号信号的处理动作恢复为原来默认的处理动作。

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>

struct sigaction act, oact;
void handler(int signo)
{
	printf("get a signal:%d\n", signo);
	sigaction(2, &oact, NULL);
}
int main()
{
	memset(&act, 0, sizeof(act));
	memset(&oact, 0, sizeof(oact));

	act.sa_handler = handler;
	act.sa_flags = 0;
	sigemptyset(&act.sa_mask);

	sigaction(2, &act, &oact);
	while (1){
		printf("I am a process...\n");
		sleep(1);
	}
	return 0;
}

运行代码后,第一次向进程发送2号信号,执行我们自定义的打印动作,当我们再次向进程发送2号信号,就执行该信号的默认处理动作了,即终止进程。

在这里插入图片描述


✨3. 可重入函数

下面主函数中调用insert函数向链表中插入结点node1,某信号处理函数中也调用了insert函数向链表中插入结点node2,乍眼一看好像没什么问题。在这里插入图片描述

下面我们来分析一下,对于下面这个链表。

在这里插入图片描述
1、首先,main函数中调用了insert函数,想将结点node1插入链表,但插入操作分为两步,刚做完第一步的时候,因为硬件中断使进程切换到内核,再次回到用户态之前检查到有信号待处理,于是切换到sighandler函数。

在这里插入图片描述

2、而sighandler函数中也调用了insert函数,将结点node2插入到了链表中,插入操作完成第一步后的情况如下:

在这里插入图片描述
3、当结点node2插入的两步操作都做完之后从sighandler返回内核态,此时链表的布局如下:

在这里插入图片描述

4、再次回到用户态就从main函数调用的insert函数中继续往下执行,即继续进行结点node1的插入操作。

在这里插入图片描述
最终结果是,main函数和sighandler函数先后向链表中插入了两个结点,但最后只有node1结点真正插入到了链表中,而node2结点就再也找不到了,造成了内存泄漏。

像上例这样,insert函数被不同的控制流调用(main函数和sighandler函数使用不同的堆栈空间,它们之间不存在调用与被调用的关系,是两个独立的控制流程),有可能在第一次调用还没返回时就再次进入该函数,我们将这种现象称之为重入。

而insert函数访问一个全局链表,有可能因为重入而造成错乱,像这样的函数我们称之为不可重入函数,反之,如果一个函数只访问自己的局部变量或参数,则称之为可重入(Reentrant)函数。

如果一个函数符合以下条件之一则是不可重入的:

  1. 调用了malloc或free,因为malloc也是用全局链表来管理堆的。
  2. 调用了标志I/O库函数,因为标准I/O库的很多实现都以不可重入的方式使用全局数据结构。

✨4. volatile

volatile是C语言的一个关键字,该关键字的作用是保持内存的可见性。

在下面的代码中,我们对2号信号进行了捕捉,当该进程收到2号信号时会将全局变量flag由0置1。也就是说,在进程收到2号信号之前,该进程会一直处于死循环状态,直到收到2号信号时将flag置1才能够正常退出。

#include <stdio.h>
#include <signal.h>

int flag = 0;

void handler(int signo)
{
	printf("get a signal:%d\n", signo);
	flag = 1;
}
int main()
{
	signal(2, handler);
	while (!flag);
	printf("Proc Normal Quit!\n");
	return 0;
}

在这里插入图片描述

该程序的运行过程好像都在我们的意料之中,但实际并非如此。代码中的main函数和handler函数是两个独立的执行流,而while循环是在main函数当中的,在编译器编译时只能检测到在main函数中对flag变量的使用。

此时编译器检测到在main函数中并没有对flag变量做修改操作,在编译器优化级别较高的时候,就有可能将flag设置进寄存器里面。

在这里插入图片描述
此时main函数在检测flag时只检测寄存器里面的值,而handler执行流只是将内存中flag的值置为1了,那么此时就算进程收到2号信号也不会跳出死循环。

在这里插入图片描述
面对这种情况,我们就可以使用volatile关键字对flag变量进行修饰,告知编译器,对flag变量的任何操作都必须真实的在内存中进行,即保持了内存的可见性。

#include <stdio.h>
#include <signal.h>

volatile int flag = 0;

void handler(int signo)
{
	printf("get a signal:%d\n", signo);
	flag = 1;
}
int main()
{
	signal(2, handler);
	while (!flag);
	printf("Proc Normal Quit!\n");
	return 0;
}

此时就算我们编译代码时携带-O3选项,当进程收到2号信号将内存中的flag变量置1时,main函数执行流也能够检测到内存中flag变量的变化,进而跳出死循环正常退出。


✨5. volatile

为了避免出现僵尸进程,父进程需要使用wait或waitpid函数等待子进程结束,父进程可以阻塞等待子进程结束,也可以非阻塞地查询的是否有子进程结束等待清理,即轮询的方式。采用第一种方式,父进程阻塞就不能处理自己的工作了;采用第二种方式,父进程在处理自己的工作的同时还要记得时不时地轮询一下,程序实现复杂。

其实,子进程在终止时会给父进程发生SIGCHLD信号,该信号的默认处理动作是忽略,父进程可以自定义SIGCHLD信号的处理动作,这样父进程就只需专心处理自己的工作,不必关心子进程了,子进程终止时会通知父进程,父进程在信号处理函数中调用wait或waitpid函数清理子进程即可。

例如,下面代码中对SIGCHLD信号进行了捕捉,并将在该信号的处理函数中调用了waitpid函数对子进程进行了清理。

#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <stdlib.h>
#include <sys/wait.h>

void handler(int signo)
{
	printf("get a signal: %d\n", signo);
	int ret = 0;
	while ((ret = waitpid(-1, NULL, WNOHANG)) > 0){
		printf("wait child %d success\n", ret);
	}
}
int main()
{
	signal(SIGCHLD, handler);
	if (fork() == 0){
		//child
		printf("child is running, begin dead: %d\n", getpid());
		sleep(3);
		exit(1);
	}
	//father
	while (1);
	return 0;
}

  • SIGCHLD属于普通信号,记录该信号的pending位只有一个,如果在同一时刻有多个子进程同时退出,那么在handler函数当中实际上只清理了一个子进程,因此在使用waitpid函数清理子进程时需要使用while不断进行清理

  • 使用waitpid函数时,需要设置WNOHANG选项,即非阻塞式等待,否则当所有子进程都已经清理完毕时,由于while循环,会再次调用waitpid函数,此时就会在这里阻塞住。

此时父进程就只需专心处理自己的工作,不必关心子进程了,子进程终止时父进程收到SIGCHLD信号,会自动进行该信号的自定义处理动作,进而对子进程进行清理。

在这里插入图片描述
事实上,由于UNIX的历史原因,要想不产生僵尸进程还有另外一种办法:父进程调用signal或sigaction函数将SIGCHLD信号的处理动作设置为SIG_IGN,这样fork出来的子进程在终止时会自动清理掉,不会产生僵尸进程,也不会通知父进程。系统默认的忽略动作和用户用signal或sigaction函数自定义的忽略通常是没有区别的,但这是一个特列。此方法对于Linux可用,但不保证在其他UNIX系统上都可用。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/159677.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

搞账号登录限制?我直接用Python自制软件

前言 一个账号只能登录一台设备&#xff1f;涨价就涨价&#xff0c;至少还能借借朋友的&#xff0c;谁还没几个朋友&#xff0c;搞限制登录这一出&#xff0c;瞬间不稀罕了 这个年头谁还不会点技术了&#xff0c;直接拿python自制一个可以看视频的软件… 话不多说&#xff0…

【尚硅谷】Java数据结构与算法笔记05 -递归

文章目录一、应用场景二、递归的概念三、递归能解决的问题四、递归需要遵守的重要规则五、递归-迷宫问题六、递归-八皇后问题&#xff08;回溯算法&#xff09;6.1 问题介绍6.2 思路分析5.3 Java代码实现一、应用场景 二、递归的概念 简单的说: 递归就是方法自己调用自己, 每次…

[机器视觉]目标检测评价指标及其实现

一、模型分类目标 数据的分类情况为两类正例(Postive)和负例(Negtive)&#xff0c;分别取P和N表示。 同时在预测情况下&#xff0c;分类正确表示为T(True)&#xff0c;错误表示为F(False);便有了以下四类表示&#xff1a; TP:(True Positive 正确的判断为正例 …

投入式水位计工作原理及应用介绍

1、设备介绍&#xff1a; 投入式水位计采用国外进口传感器芯体&#xff0c;将液位压力信号转换成对应的数字信号&#xff0c;再通过数字电路处理&#xff0c;输出 RS485 两线制的标准信号。一体式设计是将隔离式传感器和数字处理电路封装在探头内&#xff0c;通过特种电缆直接…

前端性能优化(八):性能优化问题指南

目录 一&#xff1a;从输入 URL 到页面加载显示完成都发生了什么 二&#xff1a;首屏加载优化 三&#xff1a;JavaScript 内存管理 一&#xff1a;从输入 URL 到页面加载显示完成都发生了什么 UI 线程会判断输入的地址地址是搜索的关键词还是访问站点的 URL 接下来 UI 线程…

[数据结构] 详解链表(超详细)

链表可是很重要的知识,是面试时常考的知识点,这次让我们系统的学习一下吧 文章目录1. 链表的定义2. 链表的创建2.1 基础创建2.2 尾插法创建头节点2.3 头插法3. 链表的基础方法3.1 获取链表长度3.2 是否包含某个节点3.3 在任意坐标处插入节点3.4 删除第一个值为key的节点3.5 删除…

【qsort函数实现】

前言&#xff1a; 首先在进行讲解之前&#xff0c;我们先进行对函数的一些相关介绍&#xff0c;方便大家更好的理解它。 目录函数介绍函数实现函数介绍 第一步&#xff1a; 我们可以先查询知道函数的使用方法&#xff1a; void qsort (void* base, size_t num, size_t size,i…

二级路由器的设置上网

设置步骤 &#xff08;简单记录一下&#xff09; 前提条件&#xff1a;一级路由器网络正常&#xff0c;这里主要是使用 lan 口&#xff0c;需要确保各个 lan 口正常&#xff0c;我家里是移动公司的路由器&#xff0c;有一个 lan 端口专门给电视用的&#xff0c;选择它来接二级…

ZigBee 3.0实战教程-Silicon Labs EFR32+EmberZnet-5-01:片上资源详解

【源码、文档、软件、硬件、技术交流、技术支持&#xff0c;入口见文末】 【所有相关IDE、SDK和例程源码均可从群文件免费获取&#xff0c;免安装&#xff0c;解压即用】 持续更新中&#xff0c;欢迎关注&#xff01; 前面《ZigBee 3.0实战教程-Silicon Labs EFR32EmberZnet-2…

一个无线鼠标的HID Report Desc

HID设备是USB规范定义的设备类型之一&#xff0c;其分类号为0x03. 关于USB设备类型定义&#xff0c;可参见本站&#xff1a;USB设备类型定义 - USB中文网 HID设备除了用于专门的输入输出设备外&#xff0c;有时也与其它的设备类型组合成一个复杂的设备。如对于UVC摄像头设备&a…

干货!数据智能作为先进生产力,如何助力销售效能提升?

存量竞争市场中&#xff0c;企业需要通过精细化运营提升客户价值与 ROI。数据智能作为先进生产力&#xff0c;在搜索、广告、推荐业务方面已经足够成熟&#xff0c;那么它是如何助力销售提升效能呢&#xff1f;本文将详细介绍。点击文末“阅读原文”即可观看完整版直播回放&…

中科大2007年复试机试题

中科大2007年复试机试题 文章目录中科大2007年复试机试题第一题问题描述解题思路及代码第二题问题描述解题思路及代码第三题问题描述解题思路及代码第四题问题描述解题思路及代码第一题 问题描述 编写程序&#xff0c;判断给定数字是否是回文数。 示例 1 输入&#xff1a;12…

博主的心肝宝贝

写的不错的文档 Sql(Structured Query Language)语句笔记_sky wide的博客-CSDN博客常用sql语句总结https://blog.csdn.net/qq_44652591/article/details/127545318Linux samba服务配置_sky wide的博客-CSDN博客_linux samba配置但是&#xff0c;注意后面公司的需求&#xff0c;…

Docker部署Jenkins

系列文章目录 Docker部署 registry Docker搭建 svn Docker部署 Harbor Docker 部署SQL Server 2017 Docker 安装 MS SqlServer Docker部署 Oracle12c Docker部署Jenkins Docker部署Jenkins系列文章目录前言一、启动docker&#xff0c;下载Jenkins镜像文件二、创建Jenkins挂载目…

fastjson 1.2.24漏洞复现

原理 fastjson由于没有对type进行安全性验证&#xff0c;使攻击者传入危险的类&#xff0c;通过rmi服务指定的攻击机上的恶意class文件&#xff0c;导致命令执行。 版本 1.2.24 环境准备 靶机&#xff1a;ubuntu&#xff0c;192.168.52.129 攻击机&#xff1a;kali&#…

数组的定义和使用

一、一维数组的定义、初始化 1. 一维数组的定义 元素类型 数组名[常量表达式]&#xff1b; &#xff08;1&#xff09;一维数组是由元素类型、数组名和长度组成的构造类型。 &#xff08;2&#xff09;数组名必须符合C标识符规则。 &#xff08;3&#xff09;常量表…

【ONE·C || 初识C语言 】

总言 C语言初步认识。 文章目录总言1、main函数的三种写法2、常见数据类型&#xff1a;内置类型、自定义类型2.1、内置类型总述2.2、内置类型大小计算(32/64)2.3、计算机基本存储单位3、常量、变量3.1、变量3.1.1、变量的分类&#xff1a;全局变量、局部变量3.1.2、变量的作用域…

XL1278-SMT无线模块介绍

XL1278-SMT无线模块简介XL1278-SMT无线模块是采用SEMTECH公司最新的LoRaTM调制技术的无线芯片&#xff0c;该模块除传统的GFSK调制技术外&#xff0c;还采用了LoRa&#xff08;远程&#xff09;扩频技术&#xff0c;具有超远距离扩频通讯&#xff0c;高抗干扰性和最大限度的减小…

SAP 成本组件分割价格详解

本文整理CKM3中“CV成本组件”视图下各项成本的价格取值逻辑。 SELECTTCKH3~ELEMT ”成本构成号TCKH3~EL_HV ”全部成本TCKH1~TXELE ”成本构成名称TKEVA04~WERTKOMP1 ”字段名FROM TCKH3INNER JOIN TCKH1 ON TCKH1~ELEHK TCKH3~ELEHKAND T…

JavaScript 比较 和 逻辑运算符

文章目录JavaScript 比较 和 逻辑运算符比较运算符如何使用逻辑运算符条件运算符JavaScript 比较 和 逻辑运算符 比较和逻辑运算符用于测试 true 或者 false。 比较运算符 比较运算符在逻辑语句中使用&#xff0c;以测定变量或值是否相等。 x5&#xff0c;下面的表格解释了比较…