科技助力输电线安全隐患预警,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建电力设备场景下输电线安全隐患目标检测预警系统

news2025/1/24 1:21:27

电力的普及让我们的生活变得更加便利,四通八达的电网连接着生活的方方面面,电力能源主要是依托于庞大复杂的电网电力设备进行传输的,有效地保障电网场景下输电线的安全对于保障我们日常生活所需要的电力有着重要的意义,但是电力设备电网庞大复杂,可能会出现各种各样的问题,单纯地依靠电力工人人工巡查很难实现全天候无死角地覆盖,这时候就需要借助于一些科技智能化数字化的手段来提升安检运维效率,尽可能地降低人工成本。本文主要就是站在这个考虑的基础上探索基于目标检测模型来开发自动化智能化的输电线安全隐患目标检测系统,期望对于出现在输电网中的异常目标安全隐患及时进行检测识别预警上报,消除潜在的安全隐患。

在我们前面的系列博文中其实已经有过很多相关的开发实践了,感兴趣的话可以自行移步阅读即可:

《科技助力输电线安全隐患预警,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建电力设备场景下输电线安全隐患目标检测预警系统》

《科技助力输电线安全隐患预警,基于YOLOv5全系列参数【n/s/m/l/x】模型开发构建电力设备场景下输电线安全隐患目标检测预警系统》

《科技助力输电线安全隐患预警,基于YOLOv7【tiny/l/x】模型开发构建电力设备场景下输电线安全隐患目标检测预警系统》

本文主要是基于YOLOv8全系列的参数模型来进行开发实验的,首先看下实例效果:

 简单看下数据集,数据集来源于网络源:

如果对YOLOv8开发构建自己的目标检测项目有疑问的可以看下面的文章,如下所示:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例】》

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

官方项目地址在这里,如下所示:

目前已经收获超过2.1w的star量了。官方提供的预训练模型如下所示:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64037.380.40.993.28.7
YOLOv8s64044.9128.41.2011.228.6
YOLOv8m64050.2234.71.8325.978.9
YOLOv8l64052.9375.22.3943.7165.2
YOLOv8x64053.9479.13.5368.2257.8

另外一套预训练模型如下:

Modelsize
(pixels)
mAPval
50-95
Speed
CPU ONNX
(ms)
Speed
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n64018.4142.41.213.510.5
YOLOv8s64027.7183.11.4011.429.7
YOLOv8m64033.6408.52.2626.280.6
YOLOv8l64034.9596.92.4344.1167.4
YOLOv8x64036.3860.63.5668.7260.6

是基于Open Image V7数据集构建的,可以根据自己的需求进行选择使用即可。

YOLOv8的定位不仅仅是目标检测,而是性能强大全面的工具库,故而在任务类型上同时支持:姿态估计、检测、分类、分割、跟踪多种类型,可以根据自己的需要进行选择使用,这里就不再详细展开了。

简单的实例实现如下所示:

from ultralytics import YOLO
 
# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

这里我们依次选择n、s、m、l和x五款不同参数量级的模型来进行开发。

这里给出yolov8的模型文件如下:

# Parameters
nc: 4 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
 
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

囊括了五款不同参数量级的模型。在训练结算保持相同的参数设置,等待训练完成后我们横向对比可视化来整体对比分析。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

【loss】

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

综合实验对比来看:五款不同参数量级的模型最终达到了较为相近的效果,综合参数量考虑这里最终选择使用s系列的模型来作为线上推理模型。

接下来详细看下s系列模型的结果详情:
【离线推理实例】

【Batch实例】

【混淆矩阵】

【F1曲线】

【Precision曲线】

【PR曲线】

【Recall曲线】

【训练可视化】

感兴趣的话也都可以自行动手实践下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1595065.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Redis报错:CROSSSLOT Keys in request don‘t hash to the same slot的解决方案

最近,项目上线的时候,出现了一个Redis的报错:CROSSSLOT Keys in request dont hash to the same slot,这个在内网环境下无法复现,因为正式环境的Redis是cluster集群模式,而我们内网环境是单机模式。(后面我…

Django第三方功能的使用

Django第三方功能的使用 Django REST framework前言1、Django--Restframework--coreapi版文档BUG:AssertionError: coreapi must be installed for schema support.How to run Django with Uvicorn webserver?2、序列化类 Serializer的使用模型序列化类 ModelSerializer的使用…

再写-全景拼接

全景拼接 1. 将读取进行灰度转化,并且输出图像,关键点和计算描述 import cv2 import numpy as np# 将读取进行灰度转化,并且输出图像,关键点和计算描述 image_left cv2.imread("C:\\Users\\HONOR\\Desktop\\image\\pinjie…

001_IoT/物联网通信协议基础: HTTP、Websocket、MQTT、AMQP、COAP、LWM2M一文搞懂

001_IoT/物联网通信协议基础: HTTP、Websocket、MQTT、AMQP、COAP、LWM2M一文搞懂 文章目录 001_IoT/物联网通信协议基础: HTTP、Websocket、MQTT、AMQP、COAP、LWM2M一文搞懂创作背景通信模型ISO/OSI七层模型 和 TCP/IP四层模型网络通信数据包格式(Ethernet II&…

【微信小程序——案例——本地生活(列表页面)】

案例——本地生活(列表页面) 九宫格中实现导航跳转——以汽车服务为案例(之后可以全部实现页面跳转——现在先实现一个) 在app.json中添加新页面 修改之前的九宫格view改为navitage 效果图: 动态设置标题内容—…

【5G PHY】5G无线链路监测原理简述

博主未授权任何人或组织机构转载博主任何原创文章,感谢各位对原创的支持! 博主链接 本人就职于国际知名终端厂商,负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G算力网络技术标准研究。 博客…

车载电子电器架构 —— 平行开发策略

车载电子电器架构 —— 平行开发策略 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己…

架构师系列-搜索引擎ElasticSearch(八)- 集群管理故障恢复

故障转移 集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。 下图中node1是主节点,其他两个节点是从节点 节点故障 此时node1…

【LeetCode】回溯算法类题目详解

所有题目均来自于LeetCode,刷题代码使用的Python3版本 回溯算法 回溯算法是一种搜索的方法,在二叉树总结当中,经常使用到递归去解决相关的问题,在二叉树的所有路径问题中,我们就使用到了回溯算法来找到所有的路径。 …

计算机网络 实验指导 实验17

实验17 配置无线网络实验 1.实验拓扑图 Table PC0 和 Table PC1 最开始可能还会连Access Point0,无影响后面会改 名称接口IP地址网关地址Router0fa0/0210.10.10.1fa0/1220.10.10.2Tablet PC0210.10.10.11Tablet PC1210.10.10.12Wireless互联网220.10.10.2LAN192.16…

CSS-布局

display display 属性是用于控制 布局 的最重要的 CSS 属性。display 属性规定是否/如何显示元素。 每个 HTML 元素都有一个默认的 display 值,具体取决于它的元素类型。大多数元素的默认 display 值为 block 或 inline。 block block:块级元素。块级…

STL--list双向链表

功能 将数据进行链式存储 链表(list)是一种物理存储单元上非连续的存储结构,数据元素的逻辑顺序是通过链表中的指针链接实现的 链表的组成:链表由一系列结点组成 结点的组成:一个是存储数据元素的数据域&#xff0…

Java应用中文件上传安全性分析与安全实践

✨✨谢谢大家捧场,祝屏幕前的小伙伴们每天都有好运相伴左右,一定要天天开心哦!✨✨ 🎈🎈作者主页: 喔的嘛呀🎈🎈 目录 引言 一. 文件上传的风险 二. 使用合适的框架和库 1. Spr…

Tomcat服务器入门介及用postman工具简单接收数据 2024详解

Tomcat服务器 简介 Tomcat是一个开源的Servlet容器,也是一个支持Java Servlet和JSP技术的Web服务器。它由Apache软件基金会开发和维护。Tomcat的主要作用是将Java Servlet和JavaServer Pages(JSP)等动态网页技术部署到服务器上,…

Linux操作系统中关于用户管理的操作

创建新用户 useradd 【选项】 用户名 在/etc/passwd中以追加的方式在passwd的最后一行添加用户信息。 可以使用命令tail -n 1/etc/passwd查看文件的最后一行内容。 ls /home/首先/home/这是普通用户的家目录, 在/home/下会有一个跟用户名同名的家目录&#xf…

推荐一款基于vim的超可扩展文本编辑器neovim

一、简介 Vim是一个基于流行的Vi编辑器的文本编辑器,最初是在20世纪70年代发布的。Vim代表“改进的Vi”,它拥有广泛的用户基础和广泛的可用插件和扩展。 Neovim是Vim的一个分支,创建于2014年,旨在解决Vim的一些缺点,…

Node.js留言板(超详细注释)

目录结构如下 app.js // 一.引入模块 var http require(http);// 用于创建 HTTP 服务器和处理 HTTP 请求 var fs require(fs);// 用于读取和写入文件 var url require(url);// 用于解析URL// 创建留言数据对象 var msgs [{ name: 牛二, content: "我是妞儿", cr…

Hadoop+Spark大数据技术(微课版)曾国荪、曹洁版思维导图第四次作业 (第4章 HBase分布式DB)

1.简述Hbase的特点及与传统关系数据库的区别 HBase与传统关系数据库的区别 (1)数据类型 关系数据库具有丰富的数据类型,如字符串型、数值型、日期型、二进制型等。HBase只有字符串数据类型,数据的实际类型都是交由用户自己编写程序…

Spring+SpringMVC的知识总结

一:技术体系架构二:SpringFramework介绍三:Spring loC容器和核心概念3.1 组件和组件管理的概念3.1.1什么是组件:3.1.2:我们的期待3.1.3Spring充当组件管理角色(IOC)3.1.4 Spring优势3.2 Spring Ioc容器和容器实现3.2.1普通和复杂容器3.2.2 SpringIOC的容器介绍3.2.3 Spring IOC…

开源版中文和越南语贷款源码贷款平台下载 小额贷款系统 贷款源码运营版

后台 代理 前端均为vue源码,前端有中文和越南语 前端ui黄色大气,逻辑操作简单,注册可对接国际短信,可不对接 用户注册进去填写资料,后台审批,审批状态可自定义修改文字显示 源码免费下载地址抄笔记 (chaob…