关于机器学习/深度学习的一些事-答知乎问(二)

news2025/4/17 8:12:08

进化算法与深度强化学习算法结合如何进行改进?

(1)进化算法普遍存在着样本效率低下的问题,虽然其探索度较高,但其本质为全局随机性搜索,需要在整个回合结束后才能更新其种群,而深度强化学习在每个回合步中都会得到大量的信息并使用这些信息进行梯度更新,因此进化算法相较于深度强化学习来说样本效率较低.针对进化算法样本效率的问题,可以使用深度强化学习中的梯度和回合步中的其它信息对其进行指导,指引进化算法种群在解空间中的位置与下一代进化的方向。

(2)进化算法与深度强化学习的兼容性较差,目前进化算法与深度强化学习的组合与耦合方式较为单一,可以从探索和利用的角度进一步的分析和探究两者的其它结合方式。平衡强化学习中的探索和利用一直是强化学习领域中的一个重要问题,在与进化算法结合的深度强化学习中也需要对两者进行更为合理的平衡,如引人新颖度与探索度等一些度量方式在进化算法的探索和深度强化学习的利用中自动调节也是未来的方向之一。

(3)目前结合进化算法与深度强化学习的方法中均与最新的同类方法进行了比较,但很少有进行消融实验并进行进一步分析其算法获得提升的工作。进化算法本身为一种启发式算法,其理论基础较为薄弱,且与深度强化学习一样均不能保证其收敛性,因此需要加强对算法性能提升的分析与实验,从而为进一步的研究打下基础。

如何解决神经网络灾难性遗忘的问题?

1)探索生物怎样避免灾难性遗忘的机制,并根据该机制设计相似的神经网络模型。

2) 探索神经网络模型存储信息的新机制,如果神经网络模型在学习新知识后仍能保持对之前学习的知识不遗忘,必然需要存储一些关于之前学习的知识的一些信息,怎样高效地存储和利用这些信息值得研究。

3) 选取具有代表性的样本也是一种方法。该方法不仅存在于生物的认知中,也广泛存在于社会生活中。如社会生活中的选举,某一社会团体通常推选出该团体中的某几位成员而不是全体成员代表该社会团体,这也从另一个角度说明,部分样本往往可以近似代表总体样本。对比到神经网络模型中,选取某一任务中具有代表性的样本,而不是使用所有样本代表该任务; 该方法需要确定推选机制,即怎样确定样本集中的某些样本具有代表该样本集的能力。一个显而易见的事实是,神经网络模型是对生物神经网络的模仿,而现在神经网络模型出现灾难性遗忘的问题,说明对生物的神经网络研究的并不彻底,还有很多盲点。思路1) 进一步研究生物的避免研究灾难性遗忘的机制,应该是研究的重点和趋势。

随机梯度下降算法如何进一步改进?

1) 与二阶算法相比, 随机梯度下降算法的收敛速度相对较慢, 且需要更多的迭代次数。第2代和第3代改进算法虽然有效地提升了收敛速度, 但耗费了较大的时间成本和内存成本。随着数据规模的扩大和模型复杂度的提升, 单线程下的随机梯度下降算法已经不能满足大规模机器学习应用的需求。并行式随机梯度下降算法SimuParallelSGD适合于大规模学习范式和MapReduce 框架;Hogwild 算法对稀疏数据采用无锁异步更新策略, 从而有效地减少了特征更新时的冲突。目前, 研究者们已经实现了SVRG、SAGA 和MiG等改进算法的分布式和并行化版本, 但收敛速度却有待进一步提升。如何根据算法特点、数据对象和应用平台,设计并实现不同改进策略下的随机梯度下降算法的分布式与并行化版本, 使其在实际应用中发挥出较高的性能水平, 这是未来值得探索的问题。

2)随机梯度下降算法在每轮迭代过程中计算复杂度较低, 但只利用了一阶梯度, 忽略了目标函数的二阶信息及曲率, 从而限制了实际性能和收敛速度。如何结合一阶与二阶方法各自的长处,进一步设计迭代效率俱佳的随机梯度下降算法,是未来值得研究的问题。

3) 近年来, 研究者们将目光投向非凸的ERM模型, 并且提出了一些行之有效的解决方案, 其中具有代表性的策略包括添加动量跳出局部最优解、使用方差缩技术减少梯度方差和添加梯度噪声逃离鞍点等。然而, 对于更为一般的非凸、非光滑的优化问题却并未取得太大的突破, 目前仅有Prox-SAGA、Prox-SVRG+等算法, 但性能并不理想。随机梯度下降算法在非凸、非光滑条件下的策略研究, 不仅是当前面临的困局, 也是未来最具有应用价值的研究方向。

4) 对于非凸的优化问题, 梯度下降法通常存在两个缺陷: 易于陷入局部最优、无法逃离鞍点。而演化计算/智能计算无需计算梯度和确定步长, 且往往具有较好的全局收敛性。如何将随机梯度下降算法与演化计算/智能计算方法相结合, 将是一个非常值得关注的研究方向。

可解释人工智能方法的细粒度划分?

独立于模型的解释方法:特征相关解释,特征相关解释,代理模型解释等

特征相关解释包括:部分依赖图、个体条件期望、累计局部效应、特征交互、置换特征重要性、Shapley Values

基于样本的解释:对抗样本、原型、有影响力的样本

代理模型解释:全局代理模型、LIME及其变种

依赖于模型的解释方法:自解释模型和特定模型的解释等

自解释模型:线性回归、逻辑回归、决策树、朴素贝叶斯、RuleFIt

特定模型的解释:DeepLIFT、LRP、激活最大化、基于梯度的方法、类激活映射

因果解释方法:反事实解释

如何做可解释人工智能方法的定性评估?

定性评估方法依靠人的视觉感观来评价解释结果是否符合人的认知,该方法简单清晰,易于理解,对用户来说是更友好的。对于XAI方法的定性评估,主要从解释的基本单位和可视化效果两个方面进行评估。

解释的基本单位指解释是由什么组成的,可以是特征重要性值、训练集的实例,规则列表和像素等。 因此对于解释的基本单位我们想要知道其构成形式与数量。如果解释是由特征组成的,那么它是包含所有特征还是仅包含少数特征。如果提供的是反事实解释, 那么提供的解释与决策结果之间是否具有因果关系以及反事实结果对用户来说是否可行。

目前对于深度神经网络,更多采用可视化的方式进行解释,即构建显著性图来突出显示最相关的信息, 从而提供可解释性。因此对于可解释性的定性评估方法,主要从可视化效果方面考虑,包括两方面的问题: 一方面是观察目标区域的集中度和覆盖面,显著性图需要重点关注感兴趣的目标区域,而忽略其它不相关区域。显著性图中突出的区域对感兴趣目标的覆盖越全面,表明可视化效果越好。另一方面是考查多目标的可视化效果。当多个同一类别的目标同时出现在图像中时,可视化方法能够同时定位多个目标,而不会遗漏其中的某个目标。

如何做可解释人工智能方法的定量评估?

依靠人的主观度量评估模型的可解释性方法是不够的,定量评估为比较不同的解释提供了一种客观的方法,一般将可解释性定量评估方法分为两类:

一类是无特定方法的一般评估指标。 常用的指标包括:保真度,衡量解释对黑盒模型预测的近似程度;一致性,衡量相同任务产生的相似模型的解释结果是否会有差异;稳定性,衡量特征的微小变化是否会改变解释;完整性,衡量解释所包含的实例数所覆盖的解释范围。

另一类是特定方法的评估指标。

对于特征交互解释方法,比如特征的数量、特征之间的交互强度和特征的主效应复杂性来衡量用于解释的事后模型的复杂性。对于扰动的解释方法,比如可以用失真度和敏感性两个度量指标去评估模型的可解释性。还比如像素扰动定量评价指标,通过删除k个最不突出的像素后衡量分类器输出的变化。 对于因果解释方法的评估,目前的因果解释方法大多是基于反事实的解释,因此这类方法的评估是通过衡量生成反事实解释的好坏来衡量。常用的评估指标包 括:稀疏性,衡量反事实的大小;数据流性相近性,衡量反事实解释是否接近模型训练数据分布; 接近度,衡量对反事实样本的模型预测是否接近于预定义的输出;多样性,为数据实例生成的反事实 解释应该彼此不同。

对于可解释性的评估方法而言,未来我们一方面要从从应用场景、人类认知等角度来设计定性的评估指标,另一方面需要从解释结果的一致性、稳定性以及不同解释方法的差异性等角度设计评价指标,对解释方法进行综合评估。总之,模型的解释是否可靠真实并且能否提高用户的决策能力始终是评估方法需要聚焦的问题。

图片

知乎学术咨询:

哥廷根数学学派 - 知乎

工学博士,担任《Mechanical System and Signal Processing》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1593522.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

普乐蛙VR航天体验馆设备VR太空飞船VR元宇宙展厅

三天小长假就要来啦!五一假期也即将到来。老板们想捉住人流量这个财富密码吗?那快快行动起来!开启VR体验项目,假期赚翻天!小编亲测!!这款设备刺激好玩,想必会吸引各位家长小孩、学生…

v-show和v-if的区别和使用场景(超级详细)

文章目录 一、v-show与v-if的共同点二、v-show与v-if的区别三、v-show与v-if原理分析# v-show原理v-if原理 四、v-show与v-if的使用场景参考文献 一、v-show与v-if的共同点 我们都知道在 vue 中 v-show 与 v-if 的作用效果是相同的(不含v-else),都能控制元素在页面…

LangChain-25 ReAct 让大模型自己思考和决策下一步 AutoGPT实现途径、AGI重要里程碑

背景介绍 大模型ReAct(Reasoning and Acting)是一种新兴的技术框架,旨在通过逻辑推理和行动序列的构建,使大型语言模型(LLM)能够达成特定的目标。这一框架的核心思想是赋予机器模型类似人类的推理和行动能…

js基础知识+练习

一,JavaScript简单了解 1.什么是JavaScript JavaScript简称JS,是较为流行的一种前端编程语言,是一种脚本语言,通过解释器运行,主要在客户端(浏览器)上运行,现在也可以基于node.js在服…

程序员的故事:麦哲伦死于JAVA之争

程序员的故事:麦哲伦死于JAVA之争 1400年,永乐年间,永乐皇帝七点钟准时上班了,清了清嗓子,问道:大家都到了没有?今天我们开个会,主要是讲一下项目用什么语言? 元朝的时候…

airtest-ios真机搭建实践

首先阅读4 ios connection - Airtest Project Docs 在Windows环境下搭建Airtest对iOS真机进行自动化测试的过程相对复杂,因为iOS的自动化测试通常需要依赖Mac OS系统,但理论上借助一些工具和服务,Windows用户也可以间接完成部分工作。下面是…

Python中的回调函数和C中函数指针什么关系?

你好,我是安然无虞。 Python 回调 在Python中,‘回调函数’ (callback) 是指一个作为参数传递给其它代码的函数。 目的是在后者完成某些操作后调用这个传递进来的函数。 回调允许在执行异步操作或处理事件时通知调用者代码。 回调函数通常用于&#…

家庭网络防御系统搭建-虚拟机安装siem/securityonion网络连接问题汇总

由于我是在虚拟机中安装的security onion,在此过程中,遇到很多的网络访问不通的问题,通过该文章把网络连接问题做一下梳理。如果直接把securityonion 安装在物理机上,网络问题则会少很多。 NAT无法访问虚拟机 security onion虚拟…

团结引擎+OpenHarmony 1配置篇

团结引擎OpenHarmony 1 配置篇 app团结鸿蒙化第一课一 DevEco Studio 下载安装二 团结引擎三 出包 app团结鸿蒙化第一课 1 团结引擎配置2 DevEco Studio 配置 一 DevEco Studio 下载安装 申请开发者套件 1 注册华为账号 签署协议 官网 2 认真填写 DevEco Studio 开发套件申请…

某网站sign签名参数与数据响应加密逆向分析

文章目录 1. 写在前面2. 接口分析3. 断点分析4. 扣代码 【🏠作者主页】:吴秋霖 【💼作者介绍】:擅长爬虫与JS加密逆向分析!Python领域优质创作者、CSDN博客专家、阿里云博客专家、华为云享专家。一路走来长期坚守并致力…

【吊打面试官系列】Java高并发篇 - Java 中你怎样唤醒一个阻塞的线程?

大家好,我是锋哥。今天分享关于 【Java 中你怎样唤醒一个阻塞的线程?】面试题,希望对大家有帮助; Java 中你怎样唤醒一个阻塞的线程? 在Java中,可以通过以下方式唤醒一个阻塞的线程: 使用Objec…

[dvwa] sql injection

sql injection 0x01 low sql语句没有过滤 经典注入,通过逻辑or为真相当于select * from users where true,99换成1也成 用union select 对齐列数,查看数据库信息 1’ union select 1,2# order by探测对齐列数更方便 1’ or 11 order b…

【网络安全】WebPack源码(前端源码)泄露 + jsmap文件还原

前言 webpack是一个JavaScript应用程序的静态资源打包器。它构建一个依赖关系图,其中包含应用程序需要的每个模块,然后将所有这些模块打包成一个或多个bundle。大部分Vue等项目应用会使用webpack进行打包,使用webpack打包应用程序会在网站js…

C语言 | Leetcode C语言题解之第28题找出字符串中第一个匹配项的下标

题目&#xff1a; 题解&#xff1a; int strStr(char* haystack, char* needle) {int n strlen(haystack), m strlen(needle);if (m 0) {return 0;}int pi[m];pi[0] 0;for (int i 1, j 0; i < m; i) {while (j > 0 && needle[i] ! needle[j]) {j pi[j - …

体验Humane AI:我与可穿戴AI别针的生活

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

使用Redis实现用户最近浏览记录

系列文章目录 文章目录 系列文章目录前言 前言 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站&#xff0c;这篇文章男女通用&#xff0c;看懂了就去分享给你的码吧。 Redis是一个key-va…

算法库应用- 表的自然链接

功 能: 设计算法,将两个单链表数组的特定位序, 相同者,链接起来 编程人: 王涛 详细博客:https://blog.csdn.net/qq_57484399/article/details/127161982 时 间: 2024.4.14 版 本: V1.0 V1.0 main.cpp /***************************************** 功 能: 设计算法,将两个…

学浪视频怎么缓存?

缓存学浪视频轻而易举&#xff01;推荐使用“小浪助手”&#xff0c;一款便捷的工具&#xff0c;助你轻松实现。工具已经预先打包好&#xff0c;需要的朋友可以自行下载。快试试&#xff0c;畅享学习吧&#xff01; 学浪下载器链接&#xff1a;https://pan.baidu.com/s/1y7vcq…

【C++学习】深入理解C++异常处理机制:异常类型,捕获和处理策略

文章目录 ♫一.异常的提出♫二.异常的概念♫三.异常的使用♫3.1 异常的抛出和捕获♫3.2.异常的重新抛出♫3.3异常安全♫3.4 异常规范 ♫4.自定义异常体系♫5.C标准库的异常体系♫6.异常的优缺点 ♫一.异常的提出 之前&#xff1a; C语言传统的处理错误的方式与带来的弊端&…

【C++庖丁解牛】底层为红黑树结构的关联式容器--哈希容器(unordered_map和unordered_set)

&#x1f341;你好&#xff0c;我是 RO-BERRY &#x1f4d7; 致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 &#x1f384;感谢你的陪伴与支持 &#xff0c;故事既有了开头&#xff0c;就要画上一个完美的句号&#xff0c;让我们一起加油 目录 1. unordered系列关联式容…