文心一言 VS 讯飞星火 VS chatgpt (233)-- 算法导论17.2 1题

news2025/1/24 3:07:44

一、假定对一个规模永远不会超过 k 的栈执行一个栈操作序列。执行 k 个操作后,我们复制整个栈来进行备份。通过为不同的栈操作赋予适合的摊还代价,证明: n 个操作(包括复制栈)的代价为 O(n) 。

文心一言:

为了证明对一个规模永远不会超过 k 的栈执行 n 个操作(包括复制栈)的总代价为 O(n),我们可以使用摊还分析的方法。摊还分析是一种计算算法时间复杂度的技术,特别适用于那些在某些操作中需要支付额外代价(比如复制栈),但在长期内这些代价会被均摊到其他操作上的情况。

首先,我们定义每个栈操作的摊还代价。对于普通的栈操作(如 push、pop),我们可以将摊还代价设为 1,因为这些操作的时间复杂度通常是 O(1)。对于复制栈的操作,尽管其实际代价可能是 O(k)(因为需要复制栈中所有的 k 个元素),但我们可以将摊还代价设为某个大于 1 的常数 c,其中 c 是与 k 相关的某个值。

接下来,我们分析 n 个操作的总摊还代价。假设在这 n 个操作中,复制栈的操作发生了 m 次。那么,普通的栈操作的摊还代价总和为 (n - m),而复制栈的操作的摊还代价总和为 m * c。因此,总摊还代价为 (n - m) + m * c = n + m * (c - 1)。

由于栈的规模永远不会超过 k,因此在最坏情况下,复制栈的操作最多会发生 n/k 次(因为每执行 k 个操作后就会进行一次复制)。因此,m ≤ n/k。将这个上界代入总摊还代价的表达式中,我们得到:

总摊还代价 ≤ n + (n/k) * (c - 1) = n * (1 + (c - 1)/k)

这个表达式是 O(n) 的,因为 n 是主导项,而 (c - 1)/k 是一个常数因子。因此,我们证明了即使包括了复制栈的操作,n 个操作的总代价仍然是 O(n)。

注意:这里的摊还代价并不直接等于实际代价,而是用于分析算法时间复杂度的一个工具。在实际应用中,我们可能还需要考虑如何优化算法以减少复制栈操作的次数或降低其实际代价。

在这里插入图片描述

讯飞星火:

为了证明n个操作(包括复制栈)的代价为O(n),我们需要定义每个操作的摊还代价并展示这些代价之和不会超过n的常数倍。

设每个操作的实际代价为C,对于非复制操作,我们可以赋予其实际代价C。对于复制操作,由于我们复制整个栈,其实际代价是与栈中元素的数量成正比的,即最多为k。

现在,我们定义摊还代价如下:

  • 对于非复制操作,摊还代价等于其实际代价C。
  • 对于复制操作,摊还代价被定义为执行该操作之前已执行的操作数加上1。

由于我们执行k个操作后进行一次复制,这意味着每k个操作中,有k-1个非复制操作和1个复制操作。因此,对于每k个操作,总的摊还代价最多为:

( k − 1 ) ⋅ C + ( 已执行的操作数 + 1 ) (k-1) \cdot C + (已执行的操作数 + 1) (k1)C+(已执行的操作数+1)

这是因为前k-1个操作的摊还代价就是它们的实际代价C,而第k个操作(复制操作)的摊还代价是执行该操作之前已执行的操作数加上1,这最多等于k-1+1=k。

现在,考虑n个操作。由于每k个操作的总摊还代价最多为k(k-1)/2 + k = k(k+1)/2,我们可以将n个操作分为n/k个大小为k的块,加上可能的剩余操作。每个块的摊还代价最多为k(k+1)/2,因此n个操作的总摊还代价最多为:

n k c d o t k ( k + 1 ) 2 = n ( k + 1 ) 2 \frac{n}{k} cdot \frac{k(k+1)}{2} = \frac{n(k+1)}{2} kncdot2k(k+1)=2n(k+1)

这是一个关于n的线性函数,因此我们证明了n个操作(包括复制栈)的摊还代价为O(n)。

在这里插入图片描述

360智脑:

我们可以将栈操作分为两种:普通栈操作和复制操作。普通栈操作包括 push、pop、peek 等,它们对栈的状态进行修改。复制操作是将栈的全部内容复制到另一个地方,它不改变栈的状态。

对于普通栈操作,我们可以认为它的平摊代价为 1。因为在一个规模不超过 k 的栈上执行普通栈操作,最多需要移动 k 个元素,所以其总代价为 O(k)。而对于复制操作,我们将其平摊代价设为 0,因为它并不改变栈的状态,只是简单地复制数据。

现在我们需要证明 n 个操作(包括复制栈)的代价为 O(n)。我们可以通过以下思路来证明:

  1. 将 n 个操作分成两部分:普通栈操作和复制操作。假设普通栈操作有 m 个,复制操作有 n - m 个。

  2. 对于普通栈操作,总代价为 O(m),因为每个操作的平摊代价为 1。

  3. 对于复制操作,总代价为 O(n - m),因为每个操作的平摊代价为 0。

  4. 因此,n 个操作的总代价为 O(m) + O(n - m) = O(n)。

这里我们用到了一个关键的假设:复制操作的平摊代价为 0。这个假设意味着,无论栈的规模如何,复制操作的代价都是固定的。这在实际情况中可能并不成立,因为复制操作可能需要消耗额外的时间和空间资源。但在理论分析中,我们可以将复制操作的代价视为 0,以便简化问题并得到一个上界的估计。

总之,通过将栈操作分为普通操作和复制操作,并为它们赋予合适的平摊代价,我们可以证明 n 个操作(包括复制栈)的代价为 O(n)。

在这里插入图片描述

智谱清言:

为了证明 n 个操作(包括复制栈)的摊还代价为 O(n),我们需要定义每种操作的代价,并且要确保这些操作的总和是线性的,即与 n 成正比。
我们通常会有以下几种栈操作:

  1. 压栈(Push):将一个元素 onto the top of the stack。
  2. 出栈(Pop):从栈顶移除元素。
  3. 复制栈(Copy):创建当前栈的副本。
    为了简化问题,我们假设每个操作的代价是常数时间复杂度,即每个操作的代价是 O(1)。这样,我们就可以确保单个操作的代价不会随 n 变化。
    现在让我们定义每个操作的代价:
  • 压栈操作的代价为 1。
  • 出栈操作的代价为 1。
  • 复制栈操作的代价为 k,因为栈的大小永远不会超过 k。
    在这个假设下,一个操作序列的代价就是该序列中所有操作代价的总和。
    在我们的情况下,前 k 个操作(压栈和出栈)的总代价将是 k,因为每次操作的代价是 1。当第 k 个操作完成后,我们执行复制栈操作,其代价是 k。
    因此,前 k 个操作的总代价是 k,复制栈的代价也是 k,所以前 k+1 个操作的总代价是 2k。
    现在,我们考虑第 k+1 个操作到第 2k 个操作。由于栈的大小不会超过 k,接下来的 k 个操作将会是压栈和出栈的循环,总代价为 k。
    以此类推,当我们考虑到第 n-1 个操作到第 nk 个操作时,我们会发现每个操作序列的代价始终是 k 的倍数。
    因此,整个 n 个操作(包括复制栈)的总代价是:
  1. 前 k 个操作的代价:k
  2. 复制栈的代价:k
  3. 从第 k+1 个操作到第 nk 个操作的代价:(n-k)k
    总代价 = k + k + (n-k)k = 2k + nk - k^2 = (n + 1)k - k^2
    随着 n 的增加,k^2 项相对于 nk 项来说非常小,可以忽略不计。因此,总代价可以近似为 (n + 1)k,这表明了 n 个操作的摊还代价为 O(n)。

在这里插入图片描述

在这里插入图片描述

天工:

回答问题:栈操作序列的摊还代价分析

概述
本次问题探讨的是在计算机科学中,对一个规模不会超过 k k k 的栈执行一系列栈操作,并在执行 k k k 个操作后复制整个栈进行备份的情况下,如何为不同的栈操作赋予适当的摊还代价,以使得 n n n 个操作(包括复制栈操作)的总代价为 O ( n ) O(n) O(n)
详细分析
我们先来回顾一下摊还分析的基本概念。摊还分析是一种分析算法期望运行时间的技巧,通过对每一步操作分配一个“摊还”代价,使得总代价与操作次数成正比。在这里,我们的目标是证明对于任意给定的 n n n,可以通过选择合适的摊还代价,使得所有操作的总摊还代价为 O ( n ) O(n) O(n)
设定摊还代价
为了方便分析,我们假设栈的大小为 k k k,且每次操作只能添加或移除一个元素。我们可以为 PUSH 操作分配 1 1 1 的摊还代价,为 POP 操作分配 2 2 2 的摊还代价,因为每次 POP 操作都会导致至少两个元素的变动。而对于复制栈的操作,由于它涉及到的元素数量最多,我们可以将其摊还代价设置为 k k k。这是因为复制栈操作实际上涉及到 k k k 次独立的 PUSH k k k 次独立的 POP 操作,因此其摊还代价应该是 PUSHPOP 操作摊还代价的乘积,即 1 × k + 2 × k = k + 2 k = 3 k 1 \times k + 2 \times k = k + 2k = 3k 1×k+2×k=k+2k=3k
分析总摊还代价
现在我们来计算 n n n 个操作的总摊还代价。由于每个 PUSHPOP 操作的摊还代价都是常数,我们可以简单地将它们相加起来。对于复制栈的操作,由于它的摊还代价是 k k k,我们可以单独考虑。因此,总摊还代价为:
T ( n ) = P U S H e s × 1 + P O P s × 2 + C O P Y × k T(n) = PUSHes \times 1 + POPs \times 2 + COPY \times k T(n)=PUSHes×1+POPs×2+COPY×k
由于 P U S H e s + P O P s = n − 1 PUSHes + POPs = n - 1 PUSHes+POPs=n1(因为每次 PUSHPOP 操作会改变栈顶元素),我们可以进一步简化上述表达式为:
T ( n ) = ( n − 1 ) + 2 ( n − 1 ) + k T(n) = (n - 1) + 2(n - 1) + k T(n)=(n1)+2(n1)+k
T ( n ) = 3 n − 2 + k T(n) = 3n - 2 + k T(n)=3n2+k
由于 k k k 是常数,我们可以忽略 k k k T ( n ) T(n) T(n) 的影响,得到 T ( n ) = O ( n ) T(n) = O(n) T(n)=O(n)。这就证明了对于任意 n n n,总摊还代价为 O ( n ) O(n) O(n)
结论
通过上述分析,我们可以得出结论,对于一个规模不会超过 k k k 的栈,执行一系列栈操作所产生的总摊还代价为 O ( n ) O(n) O(n),这里的 n n n 是操作的次数, k k k 是栈的最大容量。这样的摊还代价分配方案是合理的,因为它既保证了单个操作的摊还代价与其实际成本相符,又确保了总摊还代价与操作次数成正比。

在这里插入图片描述

在这里插入图片描述

灵小智:

根据题目给出的条件,对于一个规模永远不会超过k的栈执行k个操作后,我们复制整个栈来进行备份。

我们假设每个栈操作的摊还代价为O(1),也就是说每个操作平均时间复杂度为O(1)。

在执行n个操作(包括复制栈)后,我们可以将其划分为两部分:

  1. 执行k个操作的初始栈
  2. 复制栈后执行的剩余n-k个操作,包括备份后的栈和对备份栈的操作

由于每个操作的摊还代价为O(1),所以执行k个初始操作的代价为O(k)。
而复制栈后执行的剩余n-k个操作,我们可以认为是对原栈和备份栈的操作。由于复制栈的代价是O(k),所以每个操作的平均代价仍然是O(1)。

因此,执行n个操作的总代价为O(k + (n - k)) = O(n)。

综上所述,根据题目中给出的条件,证明了n个操作的代价为O(n)。

在这里插入图片描述

chatgpt:

我们可以使用摊还分析来证明在执行 n 个操作(包括复制栈)时的总代价为 O(n)。假设每个操作的摊还代价为 c,那么总共执行 n 个操作的摊还代价为 nc。

首先,我们需要确定每个操作的实际代价和摊还代价。对于栈操作序列中的 k 个操作,每个操作的实际代价是 O(1),因为它们只涉及到常数级别的操作。而复制栈这一操作需要将整个栈复制一遍,所以其实际代价是 O(k)。

接下来,我们给每个操作赋予适合的摊还代价。对于普通栈操作(非复制栈),我们令其摊还代价为 c = 2。这意味着我们将剩余的摊还代价存储在当前栈中,并在未来使用这些额外的资源来支付更高成本的复制栈操作。

当执行一个复制栈操作时,由于我们有足够多的剩余摊还代价存储在当前栈中,所以可以支付实际成本 O(k),同时将部分剩余资源存储在新生成的备份栈中。这样,新生成的备份栈就有了足够多额外资源用于支付未来可能出现的高成本复制栈操作。

因此,在执行 n 个操作的过程中,每个操作的实际代价是 O(1),而每个操作的摊还代价为 c = 2。总共的摊还代价就是 nc = 2n,所以 n 个操作(包括复制栈)的总代价为 O(n)。

这样的摊还分析证明了在给定规模不会超过 k 的栈上执行栈操作序列时,整体的代价是线性级别的。

在这里插入图片描述

kimi:

为了证明 n 个操作(包括复制栈)的代价为 O(n),我们需要使用摊还分析来为每个操作分配一个摊还代价,使得整个操作序列的总摊还代价是 O(n)。

在这个问题中,我们对一个规模永远不会超过 k 的栈执行一个栈操作序列。每执行 k 个操作后,我们复制整个栈来进行备份。我们需要确定每个操作的摊还代价,使得复制栈的代价被分摊到其他操作上,从而保证整个操作序列的摊还代价为 O(n)。

我们可以采用以下策略来为操作分配摊还代价:

  1. 对于普通的 PUSH、POP 和其他栈操作,我们将它们的摊还代价设为 1。因为每个操作都是独立的,且它们的执行时间是常数时间,所以这个摊还代价是合理的。

  2. 对于复制栈的操作,我们将这个操作的摊还代价分摊到之前的 k 个操作上。这意味着每个操作将额外承担 1/k 的复制栈操作的代价。

现在,我们来计算每个操作的总摊还代价。对于前 k 个操作,它们各自的代价为 1 + 1/k。对于接下来的 k 个操作,它们的代价也是 1 + 1/k,以此类推。这意味着每组 k 个操作的总摊还代价为 (1 + 1/k) * k = 1 + k/k = 2。

由于每组 k 个操作的摊还代价为 2,那么 n 个操作的总摊还代价可以表示为 2x,其中 x 是 n/k(向下取整)的值。这是因为每组 k 个操作后,我们都会复制一次栈,而 n/k 是这样的组的数量。

所以,总摊还代价为 2x,其中 x 是 n/k。当 k 增加时,x 减少,总摊还代价接近于 2n/k。由于 k 是栈的最大规模,它是一个常数,所以总摊还代价的上界是 2n,即 O(n)。

这就证明了 n 个操作(包括复制栈)的代价为 O(n)。通过将复制栈的操作代价分摊到其他操作上,我们确保了整个操作序列的摊还代价保持在线性时间复杂度。这种方法允许我们在摊还分析中平衡高代价操作的影响,从而得到一个有效的摊还代价界限。

在这里插入图片描述

混元:

为了证明 n 个操作(包括复制栈)的代价为 O(n),我们可以使用势能法(potential method)来为每个操作分配摊还代价。首先,我们定义势能函数 φ(S),其中 S 是一个栈。势能函数用于衡量栈的状态,并在一定程度上反映执行操作的成本。

我们定义势能函数如下:
φ(S) = |S| * k,其中 |S| 是栈的大小,k 是栈的最大容量。

接下来,我们分析每个操作的摊还代价。考虑以下三种基本栈操作:

  1. PUSH(S, x):将元素 x 压入栈 S。

  2. POP(S):从栈 S 中弹出一个元素。

  3. COPY(S):复制栈 S。

  4. PUSH 操作:
    真实代价:O(1)。
    摊还代价:令 Δφ = φ(S’) - φ(S),其中 S’ 是执行 PUSH 后的栈。我们有 Δφ = (|S|+1)*k - |S|*k = k。因此,摊还代价为 O(1) + k = O(1)(因为 k 是常数)。

  5. POP 操作:
    真实代价:O(1)。
    摊还代价:令 Δφ = φ(S’) - φ(S),其中 S’ 是执行 POP 后的栈。我们有 Δφ = (|S|-1)*k - |S|*k = -k。因此,摊还代价为 O(1) - k = O(1)(因为 k 是常数)。

  6. COPY 操作:
    真实代价:O(k)。
    摊还代价:令 Δφ = φ(S’) - φ(S),其中 S’ 是执行 COPY 后的栈。我们有 Δφ = 2*|S|*k - |S|*k = |S|*k。因此,摊还代价为 O(k) + |S|*k。由于在整个操作序列中,COPY 操作只执行一次,且在 k 个操作之后执行,所以 |S| <= k。因此,摊还代价为 O(k) + k^2 = O(k)(因为 k 是常数)。

现在我们已经为每个操作分配了摊还代价。注意到在任何时候,n 个操作的总摊还代价都是 O(n)(因为每个操作的摊还代价都是 O(1) 或 O(k),而 k 是常数)。此外,由于势能函数的初始值为 0(空栈),并且在最后状态时,势能值不会超过 O(k^2)(当栈已满时)。因此,总摊还代价与总真实代价之间的差距是 O(k^2),这是一个常数。所以,n 个操作(包括复制栈)的真实代价为 O(n)。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1586850.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

直播带货行业将迎来大地震

关注卢松松&#xff0c;会经常给你分享一些我的经验和观点。 为什么这么多人喊着关闭直播带货?实体经济是到底因为什么萧条的?为什么大街上冷冷清清的?是房租、虚高的价格、还是直播带货引起的? 在4月9日的国务院政策吹风会上&#xff0c;市场监管明确指出&#xff1a; …

MINI2440 开发板 给他干出来了

环境是ubuntu14.04。不要问我为什么是这个版本&#xff0c;因为之前的ubuntu12.04 环境干不出来&#xff0c;你去试试就知道了&#xff01;各种资源包下载不下来。 输入启动参数&#xff1a; 进入MINI2440&#xff1a;别说心里一万个开心&#xff0c;启动完成&#xff0c;输入p…

关于HTTP1.0、1.1、1.x、2.0、3.0与HTTPS之间的理解

关于HTTP1.0、1.1、1.x、2.0、3.0与HTTPS之间的理解 HTTP的由来 HTTP是Hyper Text Transfer Protocol&#xff08;超文本传输协议&#xff09;的缩写。它的发展是万维网协会&#xff08;World Wide Web Consortium&#xff09;和Internet工作小组IETF&#xff08;Internet Eng…

【软件测试之判定表法】

【软件测试之判断表法】(蓝桥课学习笔记) 1、判定表法的概念 判定表又称“决策表”&#xff0c;是一种表格状的图形工具&#xff0c;适用于处理判断条件较多&#xff0c;各条件又相互组合、有多种决策方案的情况。由于决策表可以把复杂的逻辑关系和多种条件组合的情况表达的既…

最新国产中文版官网chatGPT镜像网站

分享5个国产中文版chatGPT镜像网站&#xff0c;希望可以帮助到您&#xff01; 1️⃣ HiClaude3基于国外原版GPT模型、Claude模型开发&#xff0c;是资源丰富的全能镜像&#xff0c;适合各行各业的工作者。不仅有gpt&#xff0c;而且还支持图片对话、文件对话&#xff0c;轻松解…

zookeeper解析

目录 zookeeper定义 zookeeper定义 Zookeeper是一个开源的分布式的&#xff0c;为分布式框架提供协调服务的Apache项目 Zookeeper工作机制 zookeeper从设计模式角度来理解&#xff1a; 是一个基于观察者模式设计的分布式服务管理框架&#xff0c;它负责存储和管理大家都关心…

.a和.so库文件是什么?

我们在编译开源代码后&#xff0c;通常会生成.a和.so这两个库文件&#xff0c;这两个文件有什么区别&#xff1f;又如何使用&#xff1f; 在 Linux 中&#xff0c;.a 和 .so 文件都是库文件&#xff0c;但它们有一些区别&#xff1a; 静态库文件&#xff08;.a&#xff09;&am…

【C++算法】线性DP详解:数字三角形、最长上升子序列、最长公共子序列、最长公共子串、字符串编辑距离

文章目录 1&#xff09;数字三角形1&#xff1a;顺推2&#xff1a;逆推 2&#xff09;最长上升子序列1&#xff1a;线性DP做法2&#xff1a;二分优化 3&#xff09;最长公共子序列4&#xff09;最长公共子串5&#xff09;字符串编辑距离 1&#xff09;数字三角形 1&#xff1a…

LabVIEW闭环步进电机运动系统设计及精度分析

LabVIEW闭环步进电机运动系统设计及精度分析 在自动化设备不断发展的当代&#xff0c;闭环步进电机以其高精度和可靠性成为了自动化设备的重要组成部分。以LabVIEW软件为核心&#xff0c;结合运动控制卡及驱动器模块&#xff0c;设计并实现了一个闭环步进电机的多轴运动控制系…

内核驱动更新

1.声明我们是开源的 .c 文件末尾加上 2.在Kconfig里面修改设备&#xff0c;bool&#xff08;双态&#xff09;-----》tristate&#xff08;三态&#xff09; 3.进入menuconfig修改为M 4.编译内核 make modules 也许你会看到一个 .ko 文件 5.复制到根目录文件下 在板子…

XAI有什么用?探索LLM时代利用可解释性的10种策略

ChatGPT狂飙160天&#xff0c;世界已经不是之前的样子。 新建了免费的人工智能中文站https://ai.weoknow.com 新建了收费的人工智能中文站https://ai.hzytsoft.cn/ 更多资源欢迎关注 你是否也好奇&#xff0c;在大模型时代&#xff0c;可解释性人工智能技术&#xff08;XAI&am…

SAP ABAP 连接外部数据库

前言 SAP 连接外部数据库有多种方法&#xff0c;这里我们介绍DBCO 连接 DBCO 代码 DATA: OREF TYPE REF TO CX_ROOT,TXT TYPE STRING,M_WERKS TYPE WERKS_D,STRCDATE TYPE C LENGTH 10. DATA:BEGIN OF T_ITEM OCCURS 0, CDATE TYPE C LENGTH 10, END OF T_ITEM. M…

八款禁用U盘的软件

八款禁用U盘的软件禁用U盘的软件通常用于企业或组织环境中&#xff0c;以防止未经授权的USB设备接入计算机&#xff0c;从而保护数据安全、防止病毒传播或限制员工使用U盘。以下是一些可以禁用U盘的软件推荐。 1、安企神软件 权限设置&#xff1a;为终端电脑设置使用权限&…

Terraform 语法配置

配置语法 Terraform 的配置文件都是以 .tf 为后缀Terraform 支持两种模式 HCL、JSON Provider 插件 providers 地址&#xff1a;Terraform Registry Terraform 通过 provider 管理基础设施&#xff0c;使用 provider 与云供应商 API 进行交互&#xff0c;每个 Provider 都包含…

OSCP靶场-- Sybaris

OSCP靶场–Sybaris 考点(redis MODULE LOAD命令执行) 1.nmap扫描 ## ┌──(root㉿kali)-[~/Desktop] └─# nmap 192.168.158.93 -sV -sC -Pn --min-rate 2500 -p- Starting Nmap 7.92 ( https://nmap.org ) at 2024-04-11 04:24 EDT Nmap scan report for 192.168.158.93…

差分数组加前缀和

暴力 #include <bits/stdc.h> using namespace std; char arr[(int)1e5*25]; //要强制转换为int int main() {//cout << (char)(a7);long long len0,op0;cin >> len >> op;cin >> arr; //cout << op;//cout << arr;int inx[(int)…

6.12物联网RK3399项目开发实录-驱动开发之UART 串口的使用(wulianjishu666)

嵌入式实战开发例程【珍贵收藏&#xff0c;开发必备】&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1tkDBNH9R3iAaHOG1Zj9q1Q?pwdt41u UART 使用 简介 AIO-3399J 支持 SPI 桥接/扩展 4 个增强功能串口&#xff08;UART&#xff09;的功能&#xff0c;分别为 UA…

【UE Niagara】光束发射模块学习

效果 步骤 1. 新建一个Niagara发射器&#xff0c;使用Empty模板&#xff0c;这里命名为“NE_Beam” 打开“NE_Beam”&#xff0c;添加条带渲染器 添加“Spawn Burst Instantaneous”模块&#xff0c;设置生成数量为100 添加一个“Beam Emitter Setup”模块 再添加一个“Spawn …

基于STM32G030F6部分芯片烧录程序后无法识别也不运行之救砖笔记

基于STM32G030F6部分芯片烧录程序后无法识别也不运行之救砖笔记 目录 问题背景思路总结 问题背景 使用STM32G030F6这颗ic作设计&#xff0c;程序中有设置L1级读保护。首次烧写全部显示成功&#xff0c;打算再次烧录时有极个别已经找不到芯片&#xff0c;其中不能再次烧入的板子…

什么是 DNS 记录?

DNS记录是存储在DNS服务器上的文本指令。它们表明与一个域名相关的IP地址&#xff0c;也可以提供其他信息。DNS记录是计算机用语&#xff0c;指域名系统&#xff08;Domain Name System&#xff0c;简称DNS&#xff09;中的一条记录&#xff0c;这条记录存储于DNS服务器中。每一…