Facial Micro-Expression Recognition Based on DeepLocal-Holistic Network 阅读笔记

news2025/2/27 3:02:28
中科院王老师团队的工作,用于做微表情识别。
摘要:
Toimprove the efficiency of micro-expression feature extraction,inspired by the psychological studyof attentional resource allocation for micro-expression cognition,we propose a deep local-holisticnetwork method for micro-expression recognition.
为了提高微表情特征提取的效率,我们提出了受到微表情认知注意资源分配心理学研究启发的深度本地-整体网络方法。
The first is a Hierarchical Convolutional Recurrent Neural Network(HCRNN),whichextracts the local and abundant spatio-temporal micro-expression features.
第一个是分层卷积循环神经网络(HCRNN),用于提取局部且丰富的时空微表情特征。
The second is a Robustprincipal-component-analysis-based recurrent neural network(RPRNN),which extracts global andsparse features with micro-expression-specific representations.
第二个是基于鲁棒主成分分析的循环神经网络(RPRNN),用于提取具有微表情特定表示的全局且稀疏特征。
The extracted effective features areemployed for micro-expression recognition through the fusion of sub-networks.
通过子网络的融合,利用提取的有效特征进行微表情识别。
1.简介
In order to help people recognize micro-expression,Ek-man et al.developed the Facial Action Coding System(FACS)[11]and defined the muscleactivity of facial expressions as action units(AU).
Ekman等人开发了面部动作编码系统(FACS),将面部表情的肌肉活动定义为动作单元(AU),并开发了微表情训练工具(micro-expressionTT)
In addition,since the collection and labeling of micro-expressions aretime-consuming and laborious,the total number of published micro-expression samplesis about 1000.Therefore,micro-expression recognition is a typical small sample size(SSS)problem.
由于微表情的采集和标注耗时且繁琐,已发布的微表情样本总数约为1000,因此微表情识别是典型的小样本问题。
The architecture of the proposed method mainly includestwo sub-networks:(1)a hierarchical convolutional recurrent network(HCRNN),learninglocal and abundant features from original frames of micro-expression video clips,and(2)a robust principal component analysis recurrent network(RPRNN),extracting sparseinformation from original frames of micro-expression video clips by RPCA,and thenfeeding the sparse information to a deep learning model to extract holistic and sparsefeatures.
提出方法的架构主要包括两个子网络:(1)分层卷积循环网络(HCRNN),从微表情视频片段的原始帧中学习局部丰富的特征;(2)鲁棒主成分分析循环网络(RPRNN),通过RPCA从微表情视频片段的原始帧中提取稀疏信息,然后将稀疏信息输入到深度学习模型中提取整体和稀疏特征。
2.相关工作
2.1微表情识别
In the early stages of the study,most methods adopt handcrafted features to iden-tify micro-expressions.
这些方法包括将面部划分为特定区域,并利用3D梯度方向直方图描述符识别每个区域中的运动,使用LBP-TOP提取微表情的动态和外观特征,以及采用鲁棒主成分分析(RPCA)提取稀疏微表情信息和局部时空方向特征等。
However,the small sample size of micro-expression samplesand the subtle and brief nature of micro-expression limit the combination of deep learningwith micro-expression recognition methods.Thus,how to learn the micro-expressionfeatures effectively is necessary research for further performance improvement.
然而,微表情样本数量少且微表情的微妙短暂特性限制了深度学习与微表情识别方法的结合,因此,如何有效学习微表情特征对于进一步提高性能至关重要。
2.2深度卷积网络
It is a classic and widely usedstructure with three prominent characteristics:local receptive fields shared weights andspatial or temporal subsampling.
它是一种经典且广泛使用的结构,具有三个显著特点:局部感受野、共享权重和空间或时间下采样。
2.3循环神经网络
Recurrent neural network(RNN)can be used to process sequential data throughmapping an input sequence to a corresponding output sequence,using the hidden states.
循环神经网络(RNN)可以通过使用隐藏状态将输入序列映射到相应的输出序列,用于处理序列数据。
Since micro-expressions are very subtle,it is not easy to distinguish them from neutralfaces just by a single frame.The movement pattern in the temporal sequence is an essentialfeature for micro-expressions.Therefore,we extract the temporal features from micro-expression sequence based on BRNN and BLSTM to enhance the classification performance.
由于微表情非常微妙,单帧图像不易与中性表情区分开来。因此,基于BRNN和BLSTM,我们从微表情序列中提取时间特征,以增强分类性能。
2.4 RPCA
According to the characteristic of micro-expression with short duration and low inten-sity,micro-expression data are sparse in both the spatial and temporal domains.In 2014,Wang et.al.[24]proposed E as the deserved subtle motion information of micro-expressionand A as noise for micro-expression recognition.Inspired by this idea,we adopt RPCAto obtain sparse information from micro-expression frames,and then feed the extractedinformation to RPRNN,which learns sparse and holistic micro-expression features.
针对微表情短暂且强度低的特点,微表情数据在空间和时间域中都是稀疏的。因此,借鉴Wang等人的思想,将微表情中的细微动作信息视为所需的E,将噪声视为A,采用RPCA从微表情帧中提取稀疏信息,然后将提取的信息馈送到RPRNN,学习微表情的稀疏和整体特征。
3.提出的模型
模型的整体情况
3.1HCRNN用于提取局部特征
the HCRNN Model is constructed by theCNN Module and the BRNN Module.
HCRNN模型由CNN模块和BRNN模块构成。
3.1.1CNN模型
According to the facial physical structure,only four facial regions of interest(ROIs),i.e.,eyebrows,eyes,nose,and mouth,are used for the local micro-expression featureextraction(Figure 4a).
根据面部的物理结构,仅使用了四个面部感兴趣区域(ROI),即眉毛、眼睛、鼻子和嘴巴,用于提取局部微表情特征。
As shown in the HCRNN block of Figure 3,the structure of CNN module consists offour HCNNs.For each branch,the input is the ROI gray-scale images,and the networkcontains four convolutional layers.All four HCNNs have the same structure,as listedin Table 2.
在图3中的HCRNN模块中显示了CNN模块的结构,它由四个HCNNs组成。每个分支的输入是ROI灰度图像,网络包含四个卷积层。所有四个HCNN具有相同的结构。
3.1.2BRNN模型
In a micro-expression sequence,the past context and future context usually are usefulfor prediction.Thus,a BRNN module[46]is adopted to process temporal variation inmicro-expressions.
微表情序列中的过去和未来上下文通常对预测有用,因此采用了BRNN模块来处理微表情的时间变化。
We classify micro-expressions by an FC layer in L12 ofHCRNN and obtain probabilistic outputs by the softmax layer in L13 of HCRNN
在HCRNN的L12层通过FC层对微表情进行分类,并通过L13层的softmax层获得概率输出。
3.2RPRNN用于提取整体特征
3.2.1用RPCA提取稀疏微表情
Due to the short duration and low intensity of micro-expression movement,micro-expressions could be considered as sparse data.
由于微表情运动持续时间短,强度低,可被视为稀疏数据,因此采用RPCA来获取稀疏微表情信息。
Wright et al.adopted the 1-norm as a convex surrogate for thehighly nonconvex 0-norm and the nuclear norm(or sum of singular values)to replacenon-convex low-rank matrix,
为了解决非凸问题,采用了凸代替函数,其中1-范数代替了0-范数,核范数代替了非凸低秩矩阵。
3.2.2RPRNN的模型结构
The obtained sparse micro-expression images are fed into RPRNN to extract holisticfeatures.
稀疏的微表情图像被送入RPRNN以提取整体特征
in order to learn high-level micro-expression representations,a deep BLSTM network iscreated by multiple LSTM hidden layers.
为了学习高级微表情表示,通过多个LSTM隐藏层创建了一个深层BLSTM网络。
to avoid the overfitting problem,wecombine the cross-entropy loss function with L2 Regularization
为了避免过拟合问题,将交叉熵损失函数与L2正则化结合使用,其中θindex是权重值。
3.3模型混合
就是将两个子模型的结果融合到一起,方法如下
4.实验
做了对比实验和消融实验,没啥好说的,肯定是提出的方法最好。
5.结论与展望
DeepLocal-Holistic Network,which fused by HCRNN and RPRNN,captures the local-holistic,sparse-abundant micro-expression information,and boosts the performance of micro-expression recognition.
深度本地-整体网络通过HCRNN和RPRNN的融合,捕获了局部-整体、稀疏-丰富的微表情信息,并提高了微表情识别的性能。
In future work,wewill further investigate unsupervised learning as well as data augmentation methods toimprove the performance of micro-expression recognition.
在未来的工作中,我们将进一步研究无监督学习以及数据增强方法,以提高微表情识别的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1585394.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

IDEA中无法保存设置 Cannot Save Settings

确定原因: 在IDEA中父工程不应该存在有子工程的相关东西 首先,这是我的DCYJ项目(观察右侧的Content Root) 其次,这是我的EAPOFode项目(观察右侧的Content Root爆红处) 最后我将DCYJ项目右侧的Content Root全部删掉

Java毕业设计 基于springboot vue撸宠平台 宠物系统

Java毕业设计 基于springboot vue撸宠平台 宠物系统 springboot撸宠平台 宠物系统 功能介绍 首页 图片轮播 用户或商家注册 用户或商家登录 登录验证码 店铺信息 店铺详情 店铺投诉 宠物信息 宠物详情 预订 退订 搜索 收藏 点赞 踩 评论 个人中心 更新信息 我的收藏 在线客服…

【NLP】隐马尔可夫模型(HMM)与条件随机场(CRF)简介

一. HMM 隐马尔可夫模型(Hidden Markov Model, HMM)是一种用于处理含有隐藏状态的序列数据的统计学习模型。通过建模隐藏状态之间的转移关系以及隐藏状态与观测数据的生成关系,HMM能够在仅观察到部分信息的情况下进行状态推理、概率计算、序…

Spring Boot项目获取resources目录下的文件并返回给前端

学无止境,气有浩然! 新开通公众号,欢迎大家关注,后续会持续分享技术和相关资料 文章目录 前言方案1.getResourceAsStream2.ResourceLoader3.Value配合Resource 打完收工! 前言 最近项目需要下载一个模板文件用来修改…

32.768khz晶振时间跑不准有偏差的原因

32.768kHz晶振是一种常见的晶振频率,广泛应用于实时钟电路、计时电路和低功耗设备中。然而,有时候会发现32.768kHz晶振的时间跑不准,存在一定的偏差。JF晶发电子将介绍几个可能导致32.768kHz晶振时间跑不准的原因。 1. 温度变化:…

vue3页面导出为PDF文件

vue3页面导出为PDF文件 尝试了很多方法,都没有找到完美的解决方法 目前网上有个思路,就是将页面先转存为图片,然后将图片另存为PDF文件 记录一下完整过程 一、安装必备包 安装两个第三方插件 npm i html2canvas npm i jspdfhtml2canvas…

八股面试——数据库——索引

索引的概念 B树的概念: 索引的作用 聚簇索引与非聚簇索引 聚簇索引就是主键值,在B树上,通过主键大小(数据在B树叶子节点按主键顺序排序)寻找对应的叶子节点,叶子节点保存的一整条记录。 非聚簇索引&#x…

【vim 学习系列文章 22 -- vim 实现 linux 多行快速标准注释】

文章目录 vim 实现 linux 多行快速标准注释 vim 实现 linux 多行快速标准注释 不多说了&#xff0c;直接上动图&#xff1a; 上代码&#xff1a; function! CommentBlock()" 获取Visual模式选中的起始和结束行号let old_start_line line("<")let old_end…

项目4-图书管理系统2+统一功能处理

1. 拦截器&#xff08;Interceptor&#xff09; 我们完成了强制登录的功能, 后端程序根据Session来判断用户是否登录, 但是实现⽅法是比较麻烦的。 所需要处理的内容&#xff1a; • 需要修改每个接⼝的处理逻辑 • 需要修改每个接⼝的返回结果 • 接⼝定义修改, 前端代码也需…

vue简单使用一(vue的声明)

首先引入vue的js文件&#xff1a; <script src"js/vue.js" type"application/javascript"></script> vue.js文件去vue官网下载即可 html代码 <div class"vuePro"><div> vue的属性信息都得放在这个标签下面哪怕是同级也是…

轻松玩转TikTok:TK防关联引流系统实现一键式多账号管理

TK防关联引流系统是为TikTok平台量身打造的全方位引流解决方案&#xff0c;不仅解决了传统跨境电商在TikTok运营中遇到的诸多难题&#xff0c;还通过创新技术实现了自动化、高效化的全球引流。以下是该系统的主要优势及功能特点&#xff1a; 系统核心优势 1.全球真实环境模拟…

论文| Convolutional Neural Network-based Place Recognition - 2014

2014-Convolutional Neural Network-based Place Recognition

推荐!6个实用工具类微信小程序,提升效率的神器,工作生活中一定用得到!

亲爱的时间管理小能手们&#xff0c;你们是否经常感叹一天24小时不够用&#xff1f;是不是也经历过在杂乱无章的app海洋中寻找那一个刚好满足需求的小众工具&#xff1f;别急&#xff0c;今天我要给你揭秘六款实用到哭的小程序神器&#xff0c;它们就像你口袋里的多功能瑞士军刀…

Qt——示波器/图表 QCustomPlot

一、介绍 QCustomPlot是一个用于绘图和数据可视化的Qt C小部件。它没有进一步的依赖关系&#xff0c;提供友好的文档帮助。这个绘图库专注于制作好看的&#xff0c;出版质量的2D绘图&#xff0c;图形和图表&#xff0c;以及为实时可视化应用程序提供高性能。QCustomPlot可以导出…

Hackthebox IClean

靶机信息IP/难度Medium网址https://app.hackthebox.com/machines/IClean状态Active系统Linux Python XSS, SSTI 端口扫描 PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 8.9p1 Ubuntu 3ubuntu0.6 (Ubuntu Linux; protocol 2.0) | ssh-hostkey: | 256 2cf9077…

48V转15V,48V转12V,48V转24V高效率降压恒压芯片SL3041电路简单

在现代电子设备中&#xff0c;电源转换是一个关键且常见的技术。特别是对于那些需要将48V电压转换为更低电压&#xff08;如15V、12V或24V&#xff09;的设备&#xff0c;一个高效、可靠的降压恒压芯片至关重要。本文将详细介绍一款名为SL3041的高效率降压恒压芯片&#xff0c;…

Ant Design Vue 表单验证手机号的正则

代码&#xff1a; pattern: /^1[3456789]\d{9}$/ 1. <a-form-item label"原手机号" v-bind"validateInfos.contactTel"><a-inputstyle"width: 600px"allow-clear:maxlength"20"placeholder"请输入原手机号"v-mo…

JavaWeb中的Servlet是什么?怎么使用?

文章目录 一、什么是Servlet二、Servlet的基本内容1、Servlet的作用2、Servlet接口3、Servlet接口实现类4、Servlet接口实现类开发步骤5、Servlet对象生命周期6、HttpServletResquest接口7、HttpServletResponse接口8、请求对象和响应对象流程图9、请求对象和响应对象生命周期1…

centos7部署zabbix6.4.9

文章目录 [toc]一、环境准备1&#xff09;部署lnmp2&#xff09;修改配置文件3&#xff09;安装数据库 二、部署zabbix1&#xff09;下载zabbix2&#xff09;安装zabbix服务端3&#xff09;修改配置4&#xff09;开机启动5&#xff09;安装客户端 三、登录配置1&#xff09;访问…

面试算法-170-二叉树的最大深度

题目 给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;3 解 class Solution {public int maxDepth(TreeNod…