FPGA - 以太网UDP通信(一)

news2025/2/27 23:23:10

一,简述以太网

以太网简介

​以太网是一种计算机局域网技术。IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问层协议的内容。 ​

以太网类型介绍

以太网是现实世界中最普遍的一种计算机网络。以太网有两类:第一类是经典以太网,第二类是交换式以太网,使用了一种称为交换机的设备连接不同的计算机。经典以太网是以太网的原始形式,运行速度从3~10 Mbps不等;而交换式以太网正是广泛应用的以太网,可运行在100、1000和10000Mbps那样的高速率,分别以快速以太网、千兆以太网和万兆以太网的形式呈现。

二,OSI七层模型和TCP/IP五层模型

OSI模型,即开放式通信系统互联参考模型Open System Interconnection Reference Model),是国际标准化组织(ISO)提出的一个试图使各种计算机在世界范围内互连为网络的标准框架,简称OSI。”

OSI七层模型

OSI定义了网络互连的七层模型(物理层、数据链路层、网络层、传输层、会话层、表示层、应用层),如下图所示:

应用层:为应用程序或用户请求提供各种请求服务。OSI参考模型最高层,也是最靠近用户的一层,为计算机用户、各种应用程序以及网络提供接口,也为用户直接提供各种网络服务。

表示层:数据编码、格式转换、数据加密。提供各种用于应用层数据的编码和转换功能,确保一个系统的应用层发送的数据能被另一个系统的应用层识别。如果必要,该层可提供一种标准表示形式,用于将计算机内部的多种数据格式转换成通信中采用的标准表示形式。数据压缩和加密也是表示层可提供的转换功能之一。

会话层:创建、管理和维护会话。接收来自传输层的数据,负责建立、管理和终止表示层实体之间的通信会话,支持它们之间的数据交换。该层的通信由不同设备中的应用程序之间的服务请求和响应组成。

传输层:数据通信。建立主机端到端的链接,为会话层和网络层提供端到端可靠的和透明的数据传输服务,确保数据能完整的传输到网络层。

网络层:IP选址及路由选择。通过路由选择算法,为报文或通信子网选择最适当的路径。控制数据链路层与传输层之间的信息转发,建立、维持和终止网络的连接。数据链路层的数据在这一层被转换为数据包,然后通过路径选择、分段组合、顺序、进/出路由等控制,将信息从一个网络设备传送到另一个网络设备。

数据链路层:提供介质访问和链路管理。接收来自物理层的位流形式的数据,封装成帧,传送到网络层;将网络层的数据帧,拆装为位流形式的数据转发到物理层;负责建立和管理节点间的链路,通过各种控制协议,将有差错的物理信道变为无差错的、能可靠传输数据帧的数据链路。

物理层:管理通信设备和网络媒体之间的互联互通。传输介质为数据链路层提供物理连接,实现比特流的透明传输。实现相邻计算机节点之间比特流的透明传送,屏蔽具体传输介质和物理设备的差异。

TCP/IP五层模型

TCP/IP是一组协议的代名词,它包括许多协议,组成了TCP/IP协议簇。它是把OSI七层模型简化成了五层模型。每一层都呼叫它的下一层所提供的网络来完成自己的需求

TCP/IP 五层协议和 OSI 的七层协议对应关系如下:

从上图中可以看出, TCP/IP 模型⽐ OSI 模型更加简洁,它把 应⽤层/表示层/会话层 全部整合为了 应⽤层

在每⼀层都⼯作着不同的设备,⽐如我们常⽤的交换机就⼯作在数据链路层的,⼀般的路由器是⼯作在⽹络层的。

在每⼀层实现的协议也各不同,即每⼀层的服务也不同,下图列出了每层主要的传输协议:

一般说的FPGA UDP通信,FPGA只做到了传输层,传输层以上的会话层、表示层等等,FPGA是没有的。FPGA 开发板通过一片 以太网PHY芯片 提供对以太网连接的支持,PHY芯片内提供物理层,进行4b/10b编码,PHY芯片提供MII/GMII/RGMII 接口的MAC连接

在传输层中 TCPUDP都是传输层协议,它们都属于TCP/IP协议族:

🤔 UDP

UDP的全称是⽤户数据报协议,在⽹络中它与TCP协议⼀样⽤于处理数据包,是⼀种⽆连接的协议。在OSI模型中,在传输层,处于IP协议的上⼀层。UDP有 不提供数据包分组、组装和不能对数据包进⾏排序的缺点,也就是说,当报⽂发送之后,是⽆法得知其是否安全完整到达的

它的特点如下:

  1. 面向无连接
  2. 有单播、多播、广播的功能
  3. 面向报文
  4. 不可靠性
  5. 头部开销⼩,传输数据报⽂⾼效。
🧐 TCP
  1. 面向连接
  2. 仅支持单播传输
  3. 面向字节流
  4. 可靠传输
  5. 提供拥塞控制
  6. 提供全双工通信
😜 TCP和UDP的区别

三,FPGA UDP通信硬件构成

        根据以上的简述,我们知道 FPGA UDP通信 FPGA只做到了传输层,传输层以上的会话层、表示层等等,FPGA是没有的。 所以PC端发送数据经过传输层添加TCP/UDP 头部后,在经过网络层添加IP头部,然后经过数据链路层添加MAC头部,通过层级组包传输到FPGA的PHY芯片内提供物理层,进行4b/10b编码,PHY芯片提供MII/GMII/RGMII 接口的MAC连接

硬件简化图如下所示:

组包简化图如下所示:

 四,PHY芯片接口介绍

从数据传输角度来看,控制器(FPGA )PHY 侧芯片实现以太网传输的数据链路两端,有 3 种主要的接口形式。这 3 种接口形式主要是 MII GMIIRGMII 。 MII 主要应用在百兆网传输中,而 GMII 和 RGMII 则均可以运用于千兆网, RGMII 相较于 GMII ,则可以有更高的数据位通信效率。

MII 接口

MII 接口信号连接关系及各信号的介绍如下。

GMII 接口

GMII 接口信号连接关系及各信号的介绍如下。

GMII 发送和接收时序:

RGMII 接口

RGMII 即ReducedGMII,是GMII 的简化版本,将接口信号线数量从24根减少到14根,时钟频率仍旧为125MHz,TX/RX 数据宽度从8 位变为4位。RGMII接口信号连接关系及各信号的介绍如下。

RGMII接口为了保持1000Mbps 的传输速率不变, RGMII 接口在时钟的上升沿和下降沿都采样数据。在参考时钟的上升沿发送 GMII 接口中的 TXD[3:0]/RXD[3:0] ,在参考时钟的下降沿发送 GMII 接口中的 TXD[7:4]/RXD[7:4] 。

RGMII 的时序分为两种:延时模式和非延时模式,可以通过配置PHY芯片改变模式。 用的比较多的模式是延时模式,一般PHY芯片默认配置为延时模式

时序图如下:

根据以上介绍,我们使用RGMII接口的以太网 PHY 与 MAC (PHY )的连接实现方法,解决了接口问题,才能编写对应的网络协议实现逻辑。

五,RGMII和GMII转换电路设计

在以上了解中,我们知道RGMII 是GMII 的简化版本,接口信号线数量从24根减少到14根,TX/RX 数据宽度从8 位变为4位,所以我们要实现RGMII的发送与接收

RGMII发送

对于FPGA来说,实现 RGMII 接口的发送是一个非常直接的过程,整个发送逻辑框图如图所示:

设计实现时,我们需要使用xilinx 的ODDR(Output Double Data Rate,输出双倍数据速率)原语,将该接口使用OLOGIC 块实现。ODDR 原语只有一个时钟输入,下降沿数据由输入时钟的本地反转来计时,反馈到I/O块的所有的时钟被完全复用,ODDR 原语的框图如图 所示:

其中各个端口的功能及描述如下:

除了这些端口外, ODDR原语还包含一些可用属性:

编写rgmii_send代码:

module rgmii_send(
	input                reset              ,

    output               phy_rgmii_tx_clk  ,
	output               phy_rgmii_tx_ctl  ,
	output [3:0]         phy_rgmii_tx_data ,

	input                gmii_tx_clk       ,
	input                gmii_tx_vld       ,
	input [7:0]          gmii_tx_data      

    );

wire			rgmii_tx_ctl;
wire	[3:0]	rgmii_tx_data;     

/*------------------------------------------*\
                      ODDR
\*------------------------------------------*/

   ODDR #(
      .DDR_CLK_EDGE("SAME_EDGE"), // "OPPOSITE_EDGE" or "SAME_EDGE" 
      .INIT(1'b0),    // Initial value of Q: 1'b0 or 1'b1
      .SRTYPE("SYNC") // Set/Reset type: "SYNC" or "ASYNC" 
   ) oddr_tx_rgmii_ctl (
      .Q(rgmii_tx_ctl),   // 1-bit DDR output
      .C(gmii_tx_clk),   // 1-bit clock input
      .CE(1), // 1-bit clock enable input
      .D1(gmii_tx_vld), // 1-bit data input (positive edge)
      .D2(gmii_tx_vld), // 1-bit data input (negative edge)
      .R(0),   // 1-bit reset
      .S(0)    // 1-bit set
   );
   
genvar i_tx;
generate
	for ( i_tx = 0; i_tx < 4; i_tx = i_tx + 1) begin
		ODDR #(
      		.DDR_CLK_EDGE("SAME_EDGE"), // "OPPOSITE_EDGE" or "SAME_EDGE" 
      		.INIT(1'b0),    // Initial value of Q: 1'b0 or 1'b1
      		.SRTYPE("SYNC") // Set/Reset type: "SYNC" or "ASYNC" 
   		) oddr_tx_rgmii_ctl (
      		.Q(rgmii_tx_data[i_tx]),   // 1-bit DDR output
      		.C(gmii_tx_clk),   // 1-bit clock input
      		.CE(1), // 1-bit clock enable input
      		.D1(gmii_tx_data[i_tx]), // 1-bit data input (positive edge)
      		.D2(gmii_tx_data[i_tx + 4]), // 1-bit data input (negative edge)
      		.R(0),   // 1-bit reset
      		.S(0)    // 1-bit set
        );
	end
endgenerate

/*------------------------------------------*\
                   OBUF
\*------------------------------------------*/
   OBUF  obuf_tx_rgmii_clk(
      .O(phy_rgmii_tx_clk),     // Buffer output (connect directly to top-level port)
      .I(gmii_tx_clk)      // Buffer input
   );

   OBUF  obuf_tx_rgmii_ctl(
      .O(phy_rgmii_tx_ctl),     // Buffer output (connect directly to top-level port)
      .I(rgmii_tx_ctl)      // Buffer input
   );

genvar j_tx;
generate
	for ( j_tx = 0; j_tx < 4; j_tx = j_tx + 1) begin

	   OBUF  obuf_tx_rgmii_data(
      	.O(phy_rgmii_tx_data[j_tx]),     // Buffer output (connect directly to top-level port)
      	.I(rgmii_tx_data[j_tx])      // Buffer input
   	   );	

	end
endgenerate
endmodule

RGMII接收

对于 FPGA 来说,实现 RGMII 接口的接收同样是一个非常直接的过程, 整个接收逻辑框图如图所示:

同样,设计实现时,可通过使用xilinx 的IDDR 原语,将该接口使用ILOGIC 块实现。在ILOGIC 块中,有着专用的寄存器,用于实现输入双倍数据速率(DDR)寄存器,当我们实例化IDDR 原语时便会自动访问该功能。IDDR 原语的框图如图所示:

其中各个端口的功能及描述如表

除了这些端口外, IDDR 原语还包含一些可用属性:

编写rgmii_receive代码:

`timescale 1ns / 1ps
module rgmii_receive(
	input				reset 				,

	input 				delay_refclk		,

	input 				phy_rgmii_rx_clk 	,
	input 				phy_rgmii_rx_ctl 	,
	input [3:0]			phy_rgmii_rx_data 	,

	output 				gmii_rx_clk			,
	output				gmii_rx_vld			,
	output				gmii_rx_error		,	
	output [7:0]		gmii_rx_data 			
    );
	wire			phy_rgmii_rx_clk_ibuf;	
	wire			phy_rgmii_rx_ctl_ibuf;
	wire	[3:0]	phy_rgmii_rx_data_ibuf;

	// wire            phy_rgmii_rx_ctl_delay;
	// wire [3:0]      phy_rgmii_rx_data_delay;

	wire 			gmii_rx_error_xor	 	;	

	assign gmii_rx_error = gmii_rx_vld ^ gmii_rx_error_xor;
	// assign gmii_rx_clk = phy_rgmii_rx_clk;

	/*------------------------------------------*\
	                      IBUF
	\*------------------------------------------*/
	   IBUF rgmii_rx_clk_ibuf (
	      .O(phy_rgmii_rx_clk_ibuf),     // Buffer output
	      .I(phy_rgmii_rx_clk)      // Buffer input (connect directly to top-level port)
	   );

	   IBUF rgmii_rx_ctl_ibuf (
	      .O(phy_rgmii_rx_ctl_ibuf),     // Buffer output
	      .I(phy_rgmii_rx_ctl)      // Buffer input (connect directly to top-level port)
	   );


	genvar i_rx;
	generate
		for ( i_rx = 0; i_rx < 4; i_rx = i_rx + 1) begin
			
	   IBUF rgmii_rx_data_ibuf (
	      .O(phy_rgmii_rx_data_ibuf[i_rx]),     // Buffer output
	      .I(phy_rgmii_rx_data[i_rx])      // Buffer input (connect directly to top-level port)
	   );
		end
	endgenerate
	/*------------------------------------------*\
	                    BUFG 、BUFIO
	\*------------------------------------------*/
	   BUFG rgmii_rx_clk_bufg (
	      .O(gmii_rx_clk), // 1-bit output: Clock output
	      .I(phy_rgmii_rx_clk_ibuf)  // 1-bit input: Clock input
	   );
   // BUFIO rgmii_rx_clk_bufio (
   //    .O(phy_rgmii_rx_clk_bufio), // 1-bit output: Clock output (connect to I/O clock loads).
   //    .I(phy_rgmii_rx_clk)  // 1-bit input: Clock input (connect to an IBUF or BUFMR).
   // );

	/*-----------------------------------------*\
					IDDR
	\*-----------------------------------------*/
	IDDR #(
      .DDR_CLK_EDGE("SAME_EDGE_PIPELINED"), // "OPPOSITE_EDGE", "SAME_EDGE" 
                                      //    or "SAME_EDGE_PIPELINED" 
      .INIT_Q1(1'b0), // Initial value of Q1: 1'b0 or 1'b1
      .INIT_Q2(1'b0), // Initial value of Q2: 1'b0 or 1'b1
      .SRTYPE("SYNC") // Set/Reset type: "SYNC" or "ASYNC" 
   ) iddr_rgmii_rx_ctl (
      .Q1(gmii_rx_vld), // 1-bit output for positive edge of clock
      .Q2(gmii_rx_error_xor), // 1-bit output for negative edge of clock
      .C(phy_rgmii_rx_clk_ibuf),   // 1-bit clock input
      .CE(1), // 1-bit clock enable input
      .D(phy_rgmii_rx_ctl_ibuf),   // 1-bit DDR data input
      .R(0),   // 1-bit reset
      .S(0)    // 1-bit set
   );

	genvar q_rx;
	generate
		for (q_rx = 0; q_rx<4 ; q_rx = q_rx+ 1) begin
			IDDR #(
		      .DDR_CLK_EDGE("SAME_EDGE_PIPELINED"), // "OPPOSITE_EDGE", "SAME_EDGE" 
		                                      //    or "SAME_EDGE_PIPELINED" 
		      .INIT_Q1(1'b0), // Initial value of Q1: 1'b0 or 1'b1
		      .INIT_Q2(1'b0), // Initial value of Q2: 1'b0 or 1'b1
		      .SRTYPE("SYNC") // Set/Reset type: "SYNC" or "ASYNC" 
		   ) iddr_rgmii_rx_data (
		      .Q1(gmii_rx_data[q_rx]), // 1-bit output for positive edge of clock
		      .Q2(gmii_rx_data[q_rx + 4]), // 1-bit output for negative edge of clock
		      .C(phy_rgmii_rx_clk_ibuf),   // 1-bit clock input
		      .CE(1), // 1-bit clock enable input
		      .D(phy_rgmii_rx_data_ibuf[q_rx]),   // 1-bit DDR data input
		      .R(0),   // 1-bit reset
		      .S(0)    // 1-bit set
		   );
		end
	endgenerate

endmodule

RGMII 顶层

RGMII 接口分别实现了接收和发送两部分,将两部分例化封装顶层rgmii_interface

module rgmii_interface(
	input               reset             ,

	input               delay_refclk      ,

    input               phy_rgmii_rx_clk  ,
	input               phy_rgmii_rx_ctl ,
	input [3:0]         phy_rgmii_rx_data ,

	output              gmii_rx_clk       ,
	output              gmii_rx_vld       ,
	output              gmii_rx_error     ,
	output [7:0]        gmii_rx_data      ,

    output              phy_rgmii_tx_clk  ,
	output              phy_rgmii_tx_ctl  ,
	output [3:0]        phy_rgmii_tx_data ,

	input               gmii_tx_clk       ,
	input               gmii_tx_vld       ,
	input [7:0]         gmii_tx_data 
    );


	rgmii_receive rgmii_receive
		(
			.reset             (reset),

			.delay_refclk      (delay_refclk),

			.phy_rgmii_rx_clk  (phy_rgmii_rx_clk),
			.phy_rgmii_rx_ctl (phy_rgmii_rx_ctl),
			.phy_rgmii_rx_data (phy_rgmii_rx_data),

			.gmii_rx_clk       (gmii_rx_clk),
			.gmii_rx_vld       (gmii_rx_vld),
			.gmii_rx_error     (gmii_rx_error),
			.gmii_rx_data      (gmii_rx_data)
		);

	rgmii_send rgmii_send
		(
			.reset             (reset),

			.phy_rgmii_tx_clk  (phy_rgmii_tx_clk),
			.phy_rgmii_tx_ctl  (phy_rgmii_tx_ctl),
			.phy_rgmii_tx_data (phy_rgmii_tx_data),

			.gmii_tx_clk       (gmii_tx_clk),
			.gmii_tx_vld       (gmii_tx_vld),
			.gmii_tx_data      (gmii_tx_data)
		);


endmodule

六,总结

至此,关于FPGA UDP通信的RGMII 接口与 GMII 接口的互转逻辑设计已经实现,在 FPGA 中设计以太网的接收和发送逻辑时,只需要按照 GMII 接口的形式,先设计出对应的发送和接收逻辑,再将对应的端口连接到 RGMII 与 GMII 接口转换逻辑上,就能够完成基于 RGMII 接口的以太网接收和发送。

接下来,在下一篇博客中将会实现物理层(mac层)的接收与发送。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1585177.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

流程图高亮跟踪 可自定义渲染图片

【流程跟踪】获取流程定义图 获取代码如下&#xff1a; ProcessDefinition processDefinition repositoryService.createProcessDefinitionQuery().processDefinitionKey("leave").singleResult();String diagramResourceName processDefinition.getDiagramResour…

恒流电源驱动惠斯通电桥输出电压计算

笔记 并联分流/串联分压贯穿始终 先通过式子计算每条路流经的电流大小 &#xff08;1-(支路电阻)/(所有电阻) &#xff09;* 电流源I 每条之路电流大小知道了。就可以知道每条路中间点输出 支路电流*电阻。 输出即&#xff1a;中间点输出电位差。同理可以通过阻值变化推…

力扣HOT100 - 240. 搜索二维矩阵 II

解题思路&#xff1a; 从左下角开始&#xff0c;根据条件删除行和列。 class Solution {public boolean searchMatrix(int[][] matrix, int target) {int row matrix.length - 1;int col matrix[0].length - 1;int l 0;while (row > 0 && l < col) {if (targ…

深入理解java虚拟机-类的生命周期-初始化阶段

针对P2的字节码解释&#xff1a; 操作数栈里面放1&#xff0c;然后对Demo1.value的static变量进行赋值操作&#xff0c;从栈里面拿1赋值给Demo1.value的static变量 P3的情况由于源码是把 public static int value 1; static {value 2; }颠倒为&#xff1a; static {value …

2024电力、电网与智能应用技术国际学术会议(ICPGIAT2024)

2024电力、电网与智能应用技术国际学术会议(ICPGIAT2024) 会议简介 2024年国际电力、电网和智能应用技术大会&#xff08;ICPGIAT 2024&#xff09;将在中国杭州举行&#xff0c;就“电力系统”、“智能控制”和“智能应用技术”等研究主题进行讨论和交流。会议围绕智能系统…

第十二届蓝桥杯大赛软件赛省赛Java 大学 B 组题解

1、ASC public class Main {public static void main(String[] args) {System.out.println(

药店药品进销存管理系统软件可以对有效期管理查询以及对批号库存管理

药店药品进销存管理系统软件可以对有效期管理查询以及对批号库存管理 一、前言 以下软件操作教程以&#xff0c;佳易王药店药品进销存管理软件为例说明 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 软件可以对药品有效期进行管理查询&#xff0c;可以…

AI大模型探索之路-应用篇8:Langchain框架LangServe模块-专注于AI模型的部署

目录 前言 一、概述 二、功能特性 三、REST API 开发 四、Postman调用测试 五、Client调用测试 总结 前言 随着AI大语言模型&#xff08;LLM&#xff09;的技术的不断演进&#xff0c;AI应用的开发和部署变得越来越复杂。在这样的背景下&#xff0c;LangServe应运而生—…

java的aop实现方式

java的aop可以通过三种方式来实现 1.使用ajc编译的插件来完成增强 这种方法会直接修改编译完成的class文件&#xff0c;不需要依赖springboot 2.动态代理proxy 2.1cglib 可以代理接口&#xff0c;方法等&#xff0c;这种方式代理类是目标类的子类&#xff0c;要求目标类不…

技术图纸受控下发软件,知名的技术图纸管理软件

技术图纸受控下发软件是一种专门用于管理和控制技术图纸下发的工具。这种软件的主要目的是确保技术图纸的安全、准确和受控的下发&#xff0c;同时提高图纸管理的效率和便利性。 以下是技术图纸受控下发软件的一些主要功能和特点&#xff1a; 权限管理&#xff1a;软件能够设置…

python基础——MySQL

文章目录 一、引入pymysql二、使用三、执行非查询性质的SQL语句四、执行查询性质的SQL语句五、数据插入 一、引入pymysql 除了使用图形化工具以外&#xff0c;我们也可以使用编程语言来执行SQL从而操作数据库。 在Python中&#xff0c;使用第三方库:pymysql来完成对MySQL数据库…

为什么每个人都需要了解这些数据加密技术?

在数字时代&#xff0c;数据加密技术不仅对保护企业的商业秘密至关重要&#xff0c;也是个人隐私安全的重要屏障。随着技术的进步和网络犯罪的增加&#xff0c;数据加密已经成为了信息安全领域的一个热点议题。以下是探讨为什么每个人都需要了解这些数据加密技术的几个主要原因…

Python 读写T5557低频RFID,将T5557卡制做成ID、HID卡

本示例使用的发卡器&#xff1a; T5557 T5567 T5577低频RFID读写器 EM4100 HID卡复制器 酒店门卡-淘宝网 (taobao.com) from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtWidgets import QApplication, QWidget, QDesktopWidget,QMessageBox,QCheckBox,QLineEdit from…

基于ARM内核的智能手环(day7)

RTC&#xff08;实时时钟&#xff09; 什么是RTC&#xff1f; RTC是指实时时钟&#xff08;Real-Time Clock&#xff09;&#xff0c;是一种能够持续跟踪时间的计时器&#xff0c;即使在设备断电的情况下也能保持时间的准确性。它通常用于需要准确时间记录的应用&#xff0c;…

遥感降水、气温数据的处理与可视化、ERA5大气再分析数据的统计分析、干旱监测及SCI论文写作技巧

深度探讨人工智能在大气科学中的应用&#xff0c;特别是如何结合最新AI模型与Python技术处理和分析气候数据。课程介绍包括GPT-4等先进AI工具&#xff0c;旨在帮助学员掌握这些工具的功能及应用范围。内容覆盖使用GPT处理数据、生成论文摘要、文献综述、技术方法分析等实战案例…

Oracle数据库imp文件导入失败提示:“不是有效的导出文件, 标头验证失败”解决方法

导入数据库时&#xff0c;直接提示不是有效的导出文件&#xff0c;标头验证失败 原因&#xff1a;这是因为导出的imp文件和你当前导入的数据库版本不一致造成的&#xff0c;例如&#xff1a;导出文件版本号12.0.1 导入数据库的版本号11.0.2&#xff0c;会报这个错误。 解决办法…

[C++]map set

一、set 1、概念 set是按照一定次序存储元素的容器在set中&#xff0c;元素的value也标识它(value就是key&#xff0c;类型为T)&#xff0c;并且每个value必须是唯一的。set中的元素不能在容器中修改(元素总是const)&#xff0c;但是可以从容器中插入或删除它们。在内部&…

泰迪智能科技高职人工智能专业人才培养方案

人工智能行业近年来得到了快速发展&#xff0c;全球科技公司都在竞相投入人工智能的研发&#xff0c;从硅谷到北京&#xff0c;都在人工智能上取得了显著的进步。人工智能已经从学术研究转变为影响制造业、医疗保健、交通运输和零售等多个行业的关键因素。我国政策的积极推动下…

备战2024年中学生古诗文大会(初中组):单选题真题和独家解析

我们继续来做中学生古诗文大会&#xff08;初中组&#xff09;&#xff0c;即我们常说的初中生古诗文大会的部分真题&#xff0c;从中了解初中生古诗文大会的考察内容和形式&#xff0c;并且提供了我独家的题目解析和答案&#xff0c;供初中的同学们学习和参考。 初中生古诗文…

C++常用技巧与算法总结(简洁)

前言警告&#xff1a; 1、注意数据的边界&#xff0c;数组不能越界&#xff01; 2、 时间复杂度 3、开long long 4、注意输出的四舍五入 printf("%d %.0f\n",k,sum*1.0/k);//double类型输出会自动四舍五入&#xff1b; 5、让Dev C支持C11 先在dev的【工具】里找…