一、Python常用领域
- Python用于简单脚本编程,如编写2048小游戏或12306的自动抢票软件;
- Python用于系统编程,如开发系统应用;
- Python用于开发网络爬虫;
- 网络爬虫的用途是进行数据采集,也就是将互联网中的数据采集过来。网络爬虫的难点其实并不在于爬虫本身,由于网站方为了避免被爬取回采取各种各样的反爬虫措施,而如果想要继续从网站爬取数据就需要解决这些反爬虫措施,所以网络爬虫的难点在于反爬的攻克和处理。
- Python用于Web开发,如个人博客、在线教育网站以及论坛等;
- Python用于自动化运维,如通过写Python脚本实现对于服务器集群进行自动化管理;
- Python用于网络编程,如Socket编程等;
- Python用于数据挖掘、机器学习等大数据与人工智能领域方向的程序开发,如在人工智能领域;
- Python用于自动化测试,如UI自动化测试(Python+Selenium等)、接口测试(Python requests等)、性能测试(Python Locust等)、安全性测试(Python Scapy等)、兼容性测试(Python+Selenium等)等;
二、自动化测试
- 什么是自动化测试
广义
上来讲,自动化包括一切通过工具(程序)的方式来代替或辅助手工测试的行为都可以看做自动化,包括性能测试工具(loadrunner、jmeter),或自己所写的一段程序,用于生成1到100个测试数据。所以实际上从广义上来讲:性能测试、接口测试等但凡用到测试工具的测试都称为"自动化测试"。狭义
上来讲,通工具记录或编写脚本的方式模拟手工测试的过程,通过回放或运行脚本来执行测试用例,从而代替人工对系统的功能进行验证。
当然,行业中经常说的“自动化测试”及企业中要求的“自动化测试”大多都是“基于产品或项目UI层的自动化测试”。对于性能测试,接口测试一般不把它们归纳为自动化测试的范畴。 - 为什么要做自动化测试
根据51testing的《中国软件测试从业人员调查报告》,手工测试占到的89% ,相对开发来说,测试的门槛底,薪资普遍较底,所要求的知识面虽然有一定广度,但缺乏深度。这是测试的普遍现状。
正因为手功测试人门槛不高,使大量的毕业生,甚至是非专业人员涌入这个行业。从而增加了这个行业的激烈竞争。对于工作几年扔处于手工测试的人员来说都会有强列的危机感。由于工作的技术含量不高,薪资的涨幅遇到瓶颈,另一方面受到新进入者的威胁,同样的工作公司花5K招来的人就可以做,那么就不会花8K 的招。
这个问题本不应该出现讨论技术的话题中,但他的确是大多测试人员不得不面对的一个问题。所以,从测试人员自身的发展来说,我其实非常需要通过自动化技术来增加自己有竞争力。
自动化测试最实在的优势在于——工作好找:有一个测试工程师(并不是本人)发现一个有趣的现象,她申请过的几乎所有测试职位,在招聘时都需要自动化测试经验。但当她开始工作后,就发现这些公司都试图做自动化测试,但是结果大多不怎么地。不过,尽管她参与的都是一些悲剧的项目,不过她总能把这些悲剧包装成喜剧以应对下一次面试。 - 自动测试的优势
- 频繁的回归测试 - 快速反馈 - 几乎无限制的测试用例迭代执行 - 支持敏捷和极限编程 - 遵循测试用例的文档 - 自定义缺陷报告 - 能找出手工测试中没发现的缺陷 - 自动化测试有那么多优势,为什么还有那么多项目做失败了?
我个人推论:
1、公司自动化测试人员能力不够;
2、项目难度太大,功能不稳定,需求变化太快,就盲目启动自动化,导致自动化脚本开发频繁改变,更不上需求变化的速度,最终以失败告终 ;
3、项目过于复杂,大部分功能无法实现自动化,仅仅只有小部分功能实现自动化,这个对于项目意义不大;
4、公司人员流动大,导致自动化脚本维护的难度加大,最终夭折;
- 什么项目适合做自动化测试?
假如你已经决定要学习自动化测试了,如何学习是要面临的下一个问题?这个问题以被测试产品为出发点进行分析,假如你所学的技术不能得到应用(验证),将会使你的学习过程寸步难行。
首先考考虑产品是否适合做自动化测试。这方法比较普遍的共识是从三个方面进行权衡。- 软件需求变动不频繁
测试脚本的稳定性决定了自动化测试的维护成本。如果软件需求变动过于频繁,测试人员需要根据变动的需求来更新测试用例以及相关的测试脚本,而脚本的维护本身就是一个代码开发的过程,需要修改、调试,必要的时候还要修改自动化测试的框架,如果所花费的成本不低于利用其节省的测试成本,那么自动化测试便是失败的。项目中的某些模块相对稳定,而某些模块需求变动性很大。我们便可对相对稳定的模块进行自动化测试,而变动较大的仍是用手工测试。 - 项目周期较长
由于自动化测试需求的确定、自动化测试框架的设计、测试脚本的编写与调试均需要相当长的时间来完成。这样的过程本身就是一个测试软件的开发过程,需要较长的时间来完成。如果项目的周期比较短,没有足够的时间去支持这样一个过程,那么自动化测试便成为笑谈。 - 自动化测试脚本可重复使用
自动化测试脚本的重复使用要从三个方面来考量,一方面所测试的项目之间是否很大的差异性(如C/S系统和B/S系统的差异);所选择的测试工具是否适应这种差异;最后,测试人员是否有能力开发出适应这种差异的自动化测试框架。
- 软件需求变动不频繁
-
现在我也找了很多测试的朋友,做了一个分享技术的交流群,共享了很多我们收集的技术文档和视频教程。
-
如果你不想再体验自学时找不到资源,没人解答问题,坚持几天便放弃的感受
-
可以加入我们一起交流。而且还有很多在自动化,性能,安全,测试开发等等方面有一定建树的技术大牛
-
分享他们的经验,还会分享很多直播讲座和技术沙龙
-
可以免费学习!划重点!开源的!!!
-
qq群号:680748947【暗号:csdn999】
三、主流自动化测试框架
- 自动化测试框架
桌面程序的工具有:QTP、 AutoRunner
web应用的工具有:QTP、AutoRunner、Robot Framework、watir、selenium - 测试框架选择
由于B/S架构的诸多优势,早几年前大量C/S架构的应用转为B/S结构。从而也推动了web开发与测试技术的发展。这也导致QTP框架的落寞,Selenium框架及Robot Framework框架的大量兴起。
被测试有产品是C/S架构的,那么推荐QTP ;
被测产品是B/S 结构,那么推荐selenium ;
- 市面主流自动化测试框架
RFS: Robot Framework + Selenium
Selenium+unittest框架
为什么不是QTP 或其它工具?因为selenium 对B/S应用支持很好,更重要的一点,它支持多语言的开发,真正的试用selenium ,你所要掌握的不仅仅是一个工具而已,你还需要学习一门语言。
四、我们该学什么
自然选择主流框架,假如你决定使用selenium 了之后,你又面临了一个新的问题,选择一门语言。selenium 是支持java、python、ruby、php、C#、JavaScript 。
从语言易学性来讲: ruby、python;
从语言应用广度来讲: python、java、C#、php;
从语言相关测试技术成熟度及资料来讲: python、java、ruby;
备注: 你可以考虑整个技术团队主流用什么语言,然后选择相应的语言;
备注: 我们在这里自然选择目前市面上最火,使用范围广,技术成熟度大的Python讲解;
五、Python自动化测试-学习路线
学习路线规划:
1.python(python不过关,别谈自动化);
2.Web基础(网页基础)
3.Selenium框架
4.unittest框架
5.Robot Framwork框架
6.项目
总结:
感谢每一个认真阅读我文章的人!!!
作为一位过来人也是希望大家少走一些弯路,如果你不想再体验一次学习时找不到资料,没人解答问题,坚持几天便放弃的感受的话,在这里我给大家分享一些自动化测试的学习资源,希望能给你前进的路上带来帮助。
软件测试面试文档
我们学习必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有字节大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
视频文档获取方式:
这份文档和视频资料,对于想从事【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴我走过了最艰难的路程,希望也能帮助到你!以上均可以分享,点下方小卡片即可自行领取。