C++的stack和queue类(一):适配器模式、双端队列与优先级队列

news2024/11/25 20:53:16

目录

基本概念

适配器模式       

stack.h

test.cpp

双端队列-deque

仿函数

优先级队列


基本概念

1、stack和queue不是容器是容器适配器,它们没有迭代器

2、stack的quque的默认容器是deque,因为:

  1. stack和queue不需要遍历,只需要在固定的一端或者两端进行操作。
  2. 在stack中元素增加需要扩容时,deque比vector的效率高(不需要搬移大量数据)
  3. queue中的元素增长时,deque不仅效率高,而且内存使用率高

适配器模式       

        适配器模式是一种设计模式,用于将一个类的接口转换成客户希望的另一个接口,这种类型的设计模式属于结构型模式,它涉及到单个类的功能增强,适配器模式中有三个主要角色:

  • 目标接口:客户端所期待使用的接口,适配器通过实现这个目标接口来与用户进行交互
  • 被适配者:需要被适配以符合目标接口规范的现有类
  • 适配器:实现了目标接口,并持有一个对被适配者对象的引用,在其方法内部调用被适配者对象来完成特定操作

stack.h

#pragma once
#include <assert.h>
#include <vector>
#include <list>
namespace bit 
{
	//适配器模式
	//stack<int,vector<int>> st1;
	//stack<int,list<int>> st2;
	template<class T, class Container>
	class stack
	{
	public:
		//入栈
		void push(const T& x)
		{
			_con.push_back(x);
		}

		//出栈
		void pop()
		{
			_con.pop_back();
		}

		//求大小
		size_t size()
		{
			return _con.size();
		}

		//判空
		bool empty()
		{
			return _con.empty();
		}

		//获取栈顶元素
		const T& top()
		{
			return _con.back();
		}

	private:
		Container _con;
	};
}
  • 目标接口:构成栈所需的操作接口
  • 被适配者:实现栈的底层数据结构(数组或链表) 
  • 适配器:bit::stack类

test.cpp

#include "Queue.h"
#include "Stack.h"
#include <stack>
#include <iostream>
using namespace std;

void test_stack1()
{
	bit::stack<int,vector<int>> st;
	st.push(1);
	st.push(2);
	st.push(3);
	st.push(4);

	while (!st.empty())
	{
		cout << st.top() << " ";
		st.pop();
	}
	cout << endl;

}

int main()
{
	test_stack1();
	return 0;
}

注意事项:函数参数传递的是对象,模板参数传递的是类型,函数参数可以传递缺省值,模板参数也可以传递缺省值

template<class T, class Container = vector<int>>
bit::stack<int> st; //此时就等价于bit::stack<int,vector<int>> st

双端队列-deque

vector优缺点 

  • 优点:支持下标随机访问
  • 缺点:头部或中间插入删除效率低,扩容有消耗

list的优缺点:

  • 优点:任意位置插入删除效率都不错
  • 缺点:不支持下标的随机访问

(第一个stack和queue的2:30:00处)

基本概念:deque是一种双开口的”连续“空间的数据结构,与vector相比,头插效率高,不需要搬移元素,与list相比,空间利用率更高,deque不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组

优点:deque 允许在两端进行高效插入和删除操作,且支持下标的随机访问

缺点:中间插入删除效率一般、[]效率一般(遍历时deque要频繁的检查是否移动到小空间边界)

 

仿函数

基本概念:仿函数是一个类或结构体,它重载了函数调用运算符 operator(),通过重载该运算符,这个类的实例就可以被像函数一样调用

#include <iostream>

//仿函数 + 函数模板
template <class T>
struct MyComparator 
{
    bool operator()(const T& x,const T& y) 
    {
        return x < y;
    }
};

int main() {
    MyComparator<int> cmp;
    cout<< cmp(1, 2) << endl;//有名对象
    cout<< cmp.operator()(1, 2) << endl;//有名对象
    cout<< MyComparator<int>()(1, 2) << endl;//匿名对象
    cout<< MyComparator<int>().operator()(1, 2) << endl;//匿名对象
    return 0;
}

优先级队列

~over~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1582767.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于SSM+Jsp+Mysql的农产品供销服务系统

开发语言&#xff1a;Java框架&#xff1a;ssm技术&#xff1a;JSPJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包…

0基础想进入IT行业,可以从这个框架入手

行业现状 IT、AI都是很多年来的热门话题&#xff0c;以至于时至今日&#xff0c;哪怕IT行业已经卷成狗&#xff0c;依然有无数的人想要挤进这个行业。 大模型、云原生、react等等&#xff0c;无数的技术、概念应运而生。那么作为一个没有基础的人&#xff0c;该如何进入这个行…

第十四届蓝桥杯模拟考试II_物联网设计

还是要稳妥啊&#xff0c;写A板的时候感觉很简单所以将模块都混在一起了&#xff0c;结果不出意外就出BUG了又得从头开始查BUG,多简单的题模块最好都分块写写完就检查&#xff0c;这样一步一个脚印多稳 这个模块出了俩BUG第一个是要检查有没有数据进入if语句&#xff0c;不然标…

Kubernetes(k8s)监控与报警(qq邮箱+钉钉):Prometheus + Grafana + Alertmanager(超详细)

Kubernetes&#xff08;k8s&#xff09;监控与报警&#xff08;qq邮箱钉钉&#xff09;&#xff1a;Prometheus Grafana Alertmanager&#xff08;超详细&#xff09; 1、部署环境2、基本概念简介2.1、Prometheus简介2.2、Grafana简介2.3、Alertmanager简介2.4、Prometheus …

OpenCV | 图像读取与显示

OpenCV 对图像进行处理时&#xff0c;常用API如下&#xff1a; API描述cv.imread根据给定的磁盘路径加载对应的图像&#xff0c;默认使用BGR方式加载cv.imshow展示图像cv.imwrite将图像保存到磁盘中cv.waitKey暂停一段时间&#xff0c;接受键盘输出后&#xff0c;继续执行程序…

力扣面试150 分发糖果 分步贪心

Problem: 135. 分发糖果 思路 &#x1f468;‍&#x1f3eb; 参考&#xff1a;代码随想录 一次是从左到右遍历&#xff0c;只比较右边孩子评分比左边大的情况。一次是从右到左遍历&#xff0c;只比较左边孩子评分比右边大的情况。 复杂度 时间复杂度: O ( n ) O(n) O(n) …

代码随想录算法训练营第三十六天| LeetCode 435. 无重叠区间、763.划分字母区间、56. 合并区间

一、LeetCode 435. 无重叠区间 题目链接/文章讲解/视频讲解&#xff1a;https://programmercarl.com/0435.%E6%97%A0%E9%87%8D%E5%8F%A0%E5%8C%BA%E9%97%B4.html 状态&#xff1a;已解决 1.思路 本题的局部最优是尽量移除与某个区间重叠的其他区间&#xff0c;全局最优是移除的…

构建强健身体的未来:健身管理平台微服务架构解析

在现代社会&#xff0c;人们越来越关注健康和身体素质的提升。健身管理平台应运而生&#xff0c;为用户提供个性化的健身计划、监测和管理工具。微服务架构作为一种灵活且可扩展的系统设计方法&#xff0c;为健身管理平台提供了高效、可靠的基础。 1. 概述健身管理平台微服务架…

Open CASCADE学习|统计形状拓扑数量

边界表示法&#xff08;Boundary Representation&#xff0c;简称B-Rep&#xff09;是几何造型中最成熟、无二义的表示法。它主要用于描述物体的几何信息和拓扑信息。在边界表示法中&#xff0c;一个实体&#xff08;Solid&#xff09;由一组封闭的面&#xff08;Face&#xff…

创建大量栅格文件并分别写入像元数据:C++ GDAL代码实现

本文介绍基于C语言GDAL库&#xff0c;批量创建大量栅格遥感影像文件&#xff0c;并将数据批量写入其中的方法。 首先&#xff0c;我们来明确一下本文所需实现的需求。已知我们对大量遥感影像进行了批量读取与数据处理操作——具体过程可以参考文章C GDAL提取多时相遥感影像中像…

nginx工作原理解析

目录 1、master-workers 的工作机制介绍 2、master-workers 的机制的好处 3、设置多少个 worker 4、最大连接数和支持的最大并发数的计算 1、master-workers 的工作机制介绍 nginx在启动后&#xff0c;会有一个master进程和一个或者多个相互独立的worker进程 过来的请求由…

HDLbits 刷题 --Exams/m2014 q4h

Implement the following circuit: 实现以下电路&#xff1a; module top_module (input in,output out);assign out in; endmodule 运行结果&#xff1a;

Spark_SparkSql写入Oracle_Undefined function.....将长字符串写入Oracle中方法..

在使用Spark编写代码将读库处理然后写入Oracle中遇到了诸多小bug,很磨人。shit!! 实测1&#xff1a;TO_CLOB(a3) 代码样例 --这是一个sparksql写入hive的一个小逻辑&#xff0c;我脱敏了噻 SELECT a1, a2, TO_CLOB(a3) AS clob_data, TO_DATE(a4) AS time FROM table1 WHERE…

关于Linux下的进程等待(进程篇)

目录 为什么存在进程等待&#xff1f;进程等待是在做什么&#xff1f; 怎样去执行进程等待&#xff1f; status options 为什么存在进程等待&#xff1f;进程等待是在做什么&#xff1f; 代码示例&#xff1a;模仿僵尸进程 #include <stdio.h> #include <unistd.…

3D-Aware Multi-Class Image-to-Image Translation with NeRFs

3D-Aware Multi-Class Image-to-Image Translation with NeRFs 利用NeRFs实现3D感知的多类图像到图像的翻译 Senmao Li1  Joost van de Weijer2  Yaxing Wang1 李森茂 1 范德维杰 2 王亚兴 1  Fahad Shahbaz Khan3,4  Meiqin Liu5  Jian Yang1 法哈德夏巴兹汗 3,4 刘梅琴 …

DSP笔记13-时间基准子模块Time base(TB)比较子模块Counter cpmpare(CC)

时间基准子模块Time base(TB) 同步&#xff0c;计数 CTR计数寄存器 PRD周期寄存器 CMP比较寄存器&#xff0c;占空比 EPWMA&#xff0c; EPWMB&#xff0c;两个比较寄存器&#xff0c;但只有以及计数寄存器以及一个周期寄存器 计数模式 计数时钟TBCLK HSPCLKDIVx x0,分…

存算架构优化:为大模型算力提升铺平道路

随着人工智能技术的飞速发展&#xff0c;大模型已经成为了推动各行各业进步的关键力量。从自然语言处理到图像识别&#xff0c;再到复杂的数据分析&#xff0c;大模型以其卓越的性能和广泛的应用前景&#xff0c;正逐渐成为AI领域的焦点。然而&#xff0c;大模型的高效运行离不…

Day 2. 2440相关知识点

1、arm的工作模式有哪些&#xff1f; ARM的工作模式分为普通模式、特权模式&#xff0c;其中特权模式又细分为六种模式 普通模式用户模式&#xff08;User&#xff09;大部分任务执行在这种模式 特权模式快速中断模式FIQ当一个高优先级&#xff08;fast) 中断产生时将会进入…

传输层协议——UDP/TCP协议

目录 端口号 端口号范围 pidof UDP协议 UDP协议格式 UDP特点 UDP缓冲区 UDP的注意事项 基于UDP的应用层协议 TCP协议 TCP协议格式 序号与确认序号 窗口大小 6个标记位 紧急指针 确认应答机制 连接管理机制 三次握手 四次挥手 超时重传机制 流量控制 滑动…

虚拟网络设备的真正使命:实现有控制的通信

在数字化时代&#x1f4f2;&#xff0c;网络安全&#x1f512;成为了企业和个人防御体系中不可或缺的一部分。随着网络攻击的日益复杂和频繁&#x1f525;&#xff0c;传统的物理网络安全措施已经无法满足快速发展的需求。虚拟网络设备&#x1f5a7;&#xff0c;作为网络架构中…