[大模型]基于 ChatGLM3 和 LangChain 搭建知识库助手

news2024/11/28 8:26:40

基于 ChatGLM3 和 LangChain 搭建知识库助手

环境配置

在已完成 ChatGLM3 的部署基础上,还需要安装以下依赖包:

pip install langchain==0.0.292
pip install gradio==4.4.0
pip install chromadb==0.4.15
pip install sentence-transformers==2.2.2
pip install unstructured==0.10.30
pip install markdown==3.3.7

同时,我们需要使用到开源词向量模型 Sentence Transformer(HuggingFace 链接名为:sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2),可以将其模型参数以类似于下载 ChatGLM3 模型参数的方式下载到本地 /root/autodl-tmp/sentence-transformer。同时,在本节中,ChatGLM3-6B 的模型参数文件存储在本地 autodl-tmp/ZhipuAI/chatglm3-6b。

知识库搭建

我们选择 Datawhale 的一系列 LLM 开源教程作为语料库来源,包括:

  • Self LLM:一个围绕开源大模型、针对国内初学者、基于 AutoDL 平台的中国宝宝专属大模型教程。
  • LLM Universe:一个面向小白开发者的大模型应用开发教程,旨在结合个人知识库助手项目,通过一个课程完成大模型开发的重点入门。
  • LLM tutorial for Developers:一个面向开发者的 LLM 入门教程,基于吴恩达老师大模型系列课程内容实现。
  • So Large LLM:一个大规模预训练语言模型的教程,从数据准备、模型构建、训练策略到模型评估与改进,以及模型在安全、隐私、环境和法律道德方面的方面来提供开源知识。
  • Hugging LLM:介绍 ChatGPT 原理、使用和应用,降低使用门槛,让更多感兴趣的非NLP或算法专业人士能够无障碍使用LLM创造价值。

首先我们需要将上述远程开源仓库 Clone 到本地,可以使用以下命令:

# 进入到数据库盘
cd /root/autodl-tmp
# 打开学术资源加速
source /etc/network_turbo
# clone 上述开源仓库
git clone https://github.com/datawhalechina/self-llm.git
git clone https://github.com/datawhalechina/llm-universe.git
git clone https://github.com/datawhalechina/prompt-engineering-for-developers.git
git clone https://github.com/datawhalechina/so-large-lm.git
git clone https://github.com/datawhalechina/hugging-llm.git
# 关闭学术资源加速
unset http_proxy && unset https_proxy

接着,为语料处理方便,我们将选用上述仓库中所有的 markdown、txt 文件作为示例语料库。注意,也可以选用其中的代码文件加入到知识库中,但需要针对代码文件格式进行额外处理。

我们首先将上述仓库中所有满足条件的文件路径找出来,我们定义一个函数,该函数将递归指定文件夹路径,返回其中所有满足条件(即后缀名为 .md 或者 .txt 的文件)的文件路径:

import os 
def get_files(dir_path):
    # args:dir_path,目标文件夹路径
    file_list = []
    for filepath, dirnames, filenames in os.walk(dir_path):
        # os.walk 函数将递归遍历指定文件夹
        for filename in filenames:
            # 通过后缀名判断文件类型是否满足要求
            if filename.endswith(".md"):
                # 如果满足要求,将其绝对路径加入到结果列表
                file_list.append(os.path.join(filepath, filename))
            elif filename.endswith(".txt"):
                file_list.append(os.path.join(filepath, filename))
    return file_list

得到所有目标文件路径之后,我们可以使用 LangChain 提供的 FileLoader 对象来加载目标文件,得到由目标文件解析出的纯文本内容。由于不同类型的文件需要对应不同的 FileLoader,我们判断目标文件类型,并针对性调用对应类型的 FileLoader,同时,调用 FileLoader 对象的 load 方法来得到加载之后的纯文本对象:

from tqdm import tqdm
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredMarkdownLoader

def get_text(dir_path):
    # args:dir_path,目标文件夹路径
    # 首先调用上文定义的函数得到目标文件路径列表
    file_lst = get_files(dir_path)
    # docs 存放加载之后的纯文本对象
    docs = []
    # 遍历所有目标文件
    for one_file in tqdm(file_lst):
        file_type = one_file.split('.')[-1]
        if file_type == 'md':
            loader = UnstructuredMarkdownLoader(one_file)
        elif file_type == 'txt':
            loader = UnstructuredFileLoader(one_file)
        else:
            # 如果是不符合条件的文件,直接跳过
            continue
        docs.extend(loader.load())
    return docs

使用上文函数,我们得到的 docs 为一个纯文本对象对应的列表。得到该列表之后,我们就可以将它引入到 LangChain 框架中构建向量数据库。由纯文本对象构建向量数据库,我们需要先对文本进行分块,接着对文本块进行向量化。

LangChain 提供了多种文本分块工具,此处我们使用字符串递归分割器,并选择分块大小为 500,块重叠长度为 150:

from langchain.text_splitter import RecursiveCharacterTextSplitter

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)

接着我们选用开源词向量模型 Sentence Transformer来进行文本向量化。LangChain 提供了直接引入 HuggingFace 开源社区中的模型进行向量化的接口:

from langchain.embeddings.huggingface import HuggingFaceEmbeddings

embeddings = HuggingFaceEmbeddings(model_name="autodl-tmp/sentence-transformer")

同时,我们选择 Chroma 作为向量数据库,基于上文分块后的文档以及加载的开源向量化模型,将语料加载到指定路径下的向量数据库:

from langchain.vectorstores import Chroma

# 定义持久化路径
persist_directory = 'data_base/vector_db/chroma'
# 加载数据库
vectordb = Chroma.from_documents(
    documents=split_docs,
    embedding=embeddings,
    persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist()

将上述代码整合在一起为知识库搭建的脚本:

# 首先导入所需第三方库
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from tqdm import tqdm
import os

# 获取文件路径函数
def get_files(dir_path):
    # args:dir_path,目标文件夹路径
    file_list = []
    for filepath, dirnames, filenames in os.walk(dir_path):
        # os.walk 函数将递归遍历指定文件夹
        for filename in filenames:
            # 通过后缀名判断文件类型是否满足要求
            if filename.endswith(".md"):
                # 如果满足要求,将其绝对路径加入到结果列表
                file_list.append(os.path.join(filepath, filename))
            elif filename.endswith(".txt"):
                file_list.append(os.path.join(filepath, filename))
    return file_list

# 加载文件函数
def get_text(dir_path):
    # args:dir_path,目标文件夹路径
    # 首先调用上文定义的函数得到目标文件路径列表
    file_lst = get_files(dir_path)
    # docs 存放加载之后的纯文本对象
    docs = []
    # 遍历所有目标文件
    for one_file in tqdm(file_lst):
        file_type = one_file.split('.')[-1]
        if file_type == 'md':
            loader = UnstructuredMarkdownLoader(one_file)
        elif file_type == 'txt':
            loader = UnstructuredFileLoader(one_file)
        else:
            # 如果是不符合条件的文件,直接跳过
            continue
        docs.extend(loader.load())
    return docs

# 目标文件夹
tar_dir = [
    "/root/autodl-tmp/self-llm",
    "/root/autodl-tmp/llm-universe",
    "/root/autodl-tmp/prompt-engineering-for-developers",
    "/root/autodl-tmp/so-large-lm",
    "/root/autodl-tmp/hugging-llm",
]

# 加载目标文件
docs = []
for dir_path in tar_dir:
    docs.extend(get_text(dir_path))

# 对文本进行分块
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)

# 加载开源词向量模型
embeddings = HuggingFaceEmbeddings(model_name="autodl-tmp/sentence-transformer")

# 构建向量数据库
# 定义持久化路径
persist_directory = 'data_base/vector_db/chroma'
# 加载数据库
vectordb = Chroma.from_documents(
    documents=split_docs,
    embedding=embeddings,
    persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist()

运行上述脚本,即可在本地构建已持久化的向量数据库,后续直接导入该数据库即可,无需重复构建。

InternLM 接入 LangChain

为便捷构建 LLM 应用,我们需要基于本地部署的 ChatGLM3-6B,自定义一个 LLM 类,将 ChatGLM 接入到 LangChain 框架中。完成自定义 LLM 类之后,可以以完全一致的方式调用 LangChain 的接口,而无需考虑底层模型调用的不一致。

基于本地部署的 ChatGLM3-6B 自定义 LLM 类并不复杂,我们只需从 LangChain.llms.base.LLM 类继承一个子类,并重写构造函数与 _call 函数即可:

from langchain.llms.base import LLM
from typing import Any, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from transformers import AutoTokenizer, AutoModelForCausalLM

class ChatGLM_LLM(LLM):
    # 基于本地 InternLM 自定义 LLM 类
    tokenizer : AutoTokenizer = None
    model: AutoModelForCausalLM = None

    def __init__(self, model_path :str):
        # model_path: InternLM 模型路径
        # 从本地初始化模型
        super().__init__()
        print("正在从本地加载模型...")
        self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
        self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(torch.bfloat16).cuda()
        self.model = self.model.eval()
        print("完成本地模型的加载")

    def _call(self, prompt : str, stop: Optional[List[str]] = None,
                run_manager: Optional[CallbackManagerForLLMRun] = None,
                **kwargs: Any):
        # 重写调用函数
        response, history = self.model.chat(self.tokenizer, prompt , history=[])
        return response
        
    @property
    def _llm_type(self) -> str:
        return "ChatGLM3-6B"

在上述类定义中,我们分别重写了构造函数和 _call 函数:对于构造函数,我们在对象实例化的一开始加载本地部署的 ChatGLM3-6B 模型,从而避免每一次调用都需要重新加载模型带来的时间过长;_call 函数是 LLM 类的核心函数,LangChain 会调用该函数来调用 LLM,在该函数中,我们调用已实例化模型的 chat 方法,从而实现对模型的调用并返回调用结果。

在整体项目中,我们将上述代码封装为 llm.py,后续将直接从该文件中引入自定义的 LLM 类。

构建检索问答链

LangChain 通过提供检索问答链对象来实现对于 RAG 全流程的封装。即我们可以调用一个 LangChain 提供的 RetrievalQA 对象,通过初始化时填入已构建的数据库和自定义 LLM 作为参数,来简便地完成检索增强问答的全流程,LangChain 会自动完成基于用户提问进行检索、获取相关文档、拼接为合适的 Prompt 并交给 LLM 问答的全部流程。

首先我们需要将上文构建的向量数据库导入进来,我们可以直接通过 Chroma 以及上文定义的词向量模型来加载已构建的数据库:

from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os

# 定义 Embeddings
embeddings = HuggingFaceEmbeddings(model_name="autodl-tmp/sentence-transformer")

# 向量数据库持久化路径
persist_directory = 'data_base/vector_db/chroma'

# 加载数据库
vectordb = Chroma(
    persist_directory=persist_directory, 
    embedding_function=embeddings
)

上述代码得到的 vectordb 对象即为我们已构建的向量数据库对象,该对象可以针对用户的 query 进行语义向量检索,得到与用户提问相关的知识片段。

接着,我们实例化一个基于 ChatGLM3-6B 自定义的 LLM 对象:

from LLM import ChatGLM_LLM
llm = ChatGLM_LLM(model_path = "autodl-tmp/ZhipuAI/chatglm3-6b")
llm.predict("你是谁")

构建检索问答链,还需要构建一个 Prompt Template,该 Template 其实基于一个带变量的字符串,在检索之后,LangChain 会将检索到的相关文档片段填入到 Template 的变量中,从而实现带知识的 Prompt 构建。我们可以基于 LangChain 的 Template 基类来实例化这样一个 Template 对象:

from langchain.prompts import PromptTemplate

# 我们所构造的 Prompt 模板
template = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答案。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。
{context}
问题: {question}
有用的回答:"""

# 调用 LangChain 的方法来实例化一个 Template 对象,该对象包含了 context 和 question 两个变量,在实际调用时,这两个变量会被检索到的文档片段和用户提问填充
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)

最后,可以调用 LangChain 提供的检索问答链构造函数,基于我们的自定义 LLM、Prompt Template 和向量知识库来构建一个基于 InternLM 的检索问答链:

from langchain.chains import RetrievalQA

qa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})

得到的 qa_chain 对象即可以实现我们的核心功能,即基于 InternLM 模型的专业知识库助手。我们可以对比该检索问答链和纯 LLM 的问答效果:

# 检索问答链回答效果
question = "什么是 Self LLM"
result = qa_chain({"query": question})
print("检索问答链回答 question 的结果:")
print(result["result"])

# 仅 LLM 回答效果
result_2 = llm(question)
print("大模型回答 question 的结果:")
print(result_2)

部署 Web Demo

在完成上述核心功能后,我们可以基于 Gradio 框架将其部署到 Web 网页,从而搭建一个小型 Demo,便于测试与使用。

我们首先将上文的代码内容封装为一个返回构建的检索问答链对象的函数,并在启动 Gradio 的第一时间调用该函数得到检索问答链对象,后续直接使用该对象进行问答对话,从而避免重复加载模型:


from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os
from LLM import ChatGLM_LLM
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA

def load_chain():
    # 加载问答链
    # 定义 Embeddings
    embeddings = HuggingFaceEmbeddings(model_name="autodl-tmp/sentence-transformer")

    # 向量数据库持久化路径
    persist_directory = 'data_base/vector_db/chroma'

    # 加载数据库
    vectordb = Chroma(
        persist_directory=persist_directory,  # 允许我们将persist_directory目录保存到磁盘上
        embedding_function=embeddings
    )

    # 加载自定义 LLM
    llm = ChatGLM_LLM(model_path = "autodl-tmp/ZhipuAI/chatglm3-6b")

    # 定义一个 Prompt Template
    template = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答
    案。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。
    {context}
    问题: {question}
    有用的回答:"""

    QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)

    # 运行 chain
    qa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})
    
    return qa_chain

接着我们定义一个类,该类负责加载并存储检索问答链,并响应 Web 界面里调用检索问答链进行回答的动作:

class Model_center():
    """
    存储检索问答链的对象 
    """
    def __init__(self):
        # 构造函数,加载检索问答链
        self.chain = load_chain()

    def qa_chain_self_answer(self, question: str, chat_history: list = []):
        """
        调用问答链进行回答
        """
        if question == None or len(question) < 1:
            return "", chat_history
        try:
            chat_history.append(
                (question, self.chain({"query": question})["result"]))
            # 将问答结果直接附加到问答历史中,Gradio 会将其展示出来
            return "", chat_history
        except Exception as e:
            return e, chat_history

然后我们只需按照 Gradio 的框架使用方法,实例化一个 Web 界面并将点击动作绑定到上述类的回答方法即可:

import gradio as gr

# 实例化核心功能对象
model_center = Model_center()
# 创建一个 Web 界面
block = gr.Blocks()
with block as demo:
    with gr.Row(equal_height=True):   
        with gr.Column(scale=15):
            # 展示的页面标题
            gr.Markdown("""<h1><center>Self LLM</center></h1>
                <center>Self LLM</center>
                """)

    with gr.Row():
        with gr.Column(scale=4):
            # 创建一个聊天机器人对象
            chatbot = gr.Chatbot(height=450, show_copy_button=True)
            # 创建一个文本框组件,用于输入 prompt。
            msg = gr.Textbox(label="Prompt/问题")

            with gr.Row():
                # 创建提交按钮。
                db_wo_his_btn = gr.Button("Chat")
            with gr.Row():
                # 创建一个清除按钮,用于清除聊天机器人组件的内容。
                clear = gr.ClearButton(
                    components=[chatbot], value="Clear console")
                
        # 设置按钮的点击事件。当点击时,调用上面定义的 qa_chain_self_answer 函数,并传入用户的消息和聊天历史记录,然后更新文本框和聊天机器人组件。
        db_wo_his_btn.click(model_center.qa_chain_self_answer, inputs=[
                            msg, chatbot], outputs=[msg, chatbot])
        
    gr.Markdown("""提醒:<br>
    1. 初始化数据库时间可能较长,请耐心等待。
    2. 使用中如果出现异常,将会在文本输入框进行展示,请不要惊慌。 <br>
    """)
gr.close_all()
# 直接启动
demo.launch()

通过将上述代码封装为 run_gradio.py 脚本,直接通过 python 命令运行,即可在本地启动知识库助手的 Web Demo,默认会在 7860 端口运行,使用类似于部署的方式将服务器端口映射到本地端口即可访问:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1581888.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

详解TCP和UDP协议的区别

一、前言 TCP和UDP协议是TCP/IP协议的核心。TCP 传输协议&#xff1a;TCP 协议是一TCP (Transmission Control Protocol)和UDP(User Datagram Protocol)协议属于传输层协议。其中TCP提供IP环境下的数据可靠传输&#xff0c;它提供的服务包括数据流传送、可靠性、有效流控、全双…

实时时钟模块RX8900CE为电子产品设备提供精准时间,能够适应极度紧凑的空间

随着电子技术飞速发展&#xff0c;越来越多的设备需要用到实时时钟电路。而过往的实时时钟电路&#xff0c;大多是分立式的架构&#xff0c;外围有不少的元器件&#xff0c;不但成本高昂&#xff0c;而且稳定性也不高&#xff0c;在严苛的工作条件下就显得有点力不从心。作为设…

ARM单片机的GPIO口在控制不同LED、按键时的设置

个人备忘&#xff0c;不喜勿喷。 GPIO口在驱动共阴极、共阳极LED灯时需要不同的初始化设置 对于这一类的led灯&#xff1a; 最好选择推挽、上拉、高速输出&#xff0c;同时IO口初始化时需要拉高。 上面这种需要下拉输入&#xff1b; 上图这种需要上拉输入&#xff0c;这样才…

聊一聊一些关于npm、pnpm、yarn的事

前言 整理了最近的闲聊&#xff0c;话题是前端各个包管理器&#xff0c;如果分享的不对或者有异议的地方&#xff0c;麻烦请及时告诉我~ 耐心看完&#xff0c;也许你会有所收获~ 概述 本文阅读时间&#xff1a;10-15分钟左右&#xff1b; 难度&#xff1a;初级&#xff0c…

LeetCode 2529. 正整数和负整数的最大计数——每日一题

上一篇博客&#xff1a;LeetCode 993. 二叉树的堂兄弟节点——每日一题 写在前面&#xff1a;大家好&#xff01;我是晴空๓。如果博客中有不足或者的错误的地方欢迎在评论区或者私信我指正&#xff0c;感谢大家的不吝赐教。我的唯一博客更新地址是&#xff1a;https://ac-fun.…

【计算机考研】408网课汇总+资源分享

王道的四件套无疑是大多数同学的首选。相比其他课程来说&#xff0c;也是属于市面上最好的408课程了。 从今年的难度来看选择题部分和计网&#xff0c;比起往年来看是有很多偏题&#xff0c;大题除了计网的冷门外&#xff0c;其他倒是中规中矩。总体来看24考研的408难度是非常…

Win11 使用 WSL2 安装 linux 子系统 ubuntu

Win11 使用 WSL2 安装 linux 子系统 ubuntu 段子手168 1、用 部署映像服务和管理工具 dism.exe 命令&#xff0c;开启 WSL2 按【WIN R】&#xff0c;打开【运行】&#xff0c;输入&#xff1a;【cmd】&#xff0c;管理员打开【命令行提示符】。 启用适用于 Linux 的 Windo…

单例模式(饿汉模型,懒汉模型)

在着里我们先了解什么是单例模式。 就是某个类在进程中只能有单个实例&#xff0c;这里的单例模式需要一定的编程技巧&#xff0c;做出限制&#xff0c;一旦程序写的有问题&#xff0c;创建了多个实例&#xff0c;编程就会报错。 如果我们学会了单例模式&#xff0c;这种模式…

ORAN C平面 Section Extension 22

ORAN C平面Section扩展22用于ACK/NACK请求。除section type 7外&#xff0c;section扩展22可以用于从O-DU发送到O-RU的所有section type和section扩展。 对于一个section描述&#xff0c;O-DU可以使用section扩展22要求O-RU使用section type 8 C平面消息进行ACK/NACK反馈。关于…

Spring Validation解决后端表单校验

NotNull&#xff1a;从前台传递过来的参数不能为null,如果为空&#xff0c;会在控制台日志中把message打印出来 Range&#xff1a;范围&#xff0c;最大多少&#xff0c;最小多少 Patten&#xff0c;标注的字段值必须符合定义的正则表达式&#xff08;按照业务规则&#xff0…

智慧公厕是智慧城市建设中不可或缺的一部分

智慧城市的数字化转型正在取得显著成效&#xff0c;各项基础设施的建设也在迅速发展&#xff0c;其中智慧公厕成为了智慧城市体系中不可或缺的一部分。作为社会生活中必要的设施&#xff0c;公共厕所的信息化、数字化、智慧化升级转型能够实现全区域公共厕所管理的横向打通和纵…

T527 Qt 触摸 ----- TSLIB

一、调试 1、驱动路径 bsp/drivers/input/ctp/gt9xx/gt9xx_ts.c 2、硬件接口 挂载在TWI0下 3、中断复位脚 4、设备树 &twi0 {clock-frequency <400000>;pinctrl-0 <&twi0_pins_default>;pinctrl-1 <&twi0_pins_sleep>;pinctrl-names &quo…

vue通过echarts实现数据可视化

1、安装echarts cnpm install echarts -Sechart官方图表示例大全&#xff1a;https://echarts.apache.org/examples/zh/index.html#chart-type-line 2、代码实现 <template><div><div class"box" ref"zhu"></div><div class&…

设计模式之创建型模式---建造者模式

文章目录 建造者模式概述经典的建造者模式建造者模式的变种总结 建造者模式概述 建造者模式是一种广泛使用的设计模式&#xff0c;在三方开源库和各种SDK中经常见到。建造者设计模式在四人帮的经典著作《设计模式&#xff1a;可复用面向对象软件基础》中被提及&#xff0c;它的…

赛氪网|2024中国翻译协会年会“AI科技时代竞赛与就业”分论坛

在2024年中国翻译协会年会期间&#xff0c;赛氪网与中西部翻译协会共同体多边合作平台共同承办&#xff0c;于3月30日下午在长沙成功举办了“AI科技时代竞赛与就业分论坛”。该论坛汇聚了众多翻译界、科技界和教育界的专家学者&#xff0c;共同探讨科技、实践、就业与竞赛人才培…

五、Redis 集群搭建

目录 一、redis集群搭建&#xff08;3台机器、6个节点&#xff09; 1、在安装目录下创建7001、7002文件夹&#xff0c;把之前的redis.conf配置文件复制到7001文件夹中&#xff0c;进行编辑 2、传到其他服务器的文件要记得修改端口和集群节点信息和pidfile,不然redis 起不来 …

【MySQL】C# 连接MySQL

C# 连接MySQL 1. 添加MySQL引用 安装完MySQL之后&#xff0c;在安装的默认目录 C:\Program Files (x86)\MySQL\Connector NET 8.0 中查找MySQLData.dll文件。 在Visual Studio 中为项目中添加引用。 2. 引入命名空间 using MySql.Data.MySqlClient;3. 构建连接 private …

【项目】棋海争锋

&#x1f3a5; 个人主页&#xff1a;Dikz12&#x1f4d5;格言&#xff1a;吾愚多不敏&#xff0c;而愿加学欢迎大家&#x1f44d;点赞✍评论⭐收藏 目录 项目介绍 WebSocket介绍 使用 项目创建 数据库设计 用户模块 登录接口 注册接口 获取用户信息接口 匹配模块 …

Java每日一题(三道同一类型的题)

前言 本文一共有三道题:1.两数之和 2.三数之和 3. 四数之和 为什么把这三道题放一起呢&#xff0c;因为三数之和是可以根据两数之和进行推导&#xff0c;四数之和可以根据三数之和进行推导。 两数之和 思路分析: 我的思路: 1.排序 2.使用左右指针 3.处理细节问题 先让数组…

【C++成长记】C++入门 |函数重载、引用、内联函数

&#x1f40c;博主主页&#xff1a;&#x1f40c;​倔强的大蜗牛&#x1f40c;​ &#x1f4da;专栏分类&#xff1a;C❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 目录 一、函数重载 1、函数重载概念 二、引用 1、引用概念 2、引用特性 3、常引用 4、使用场景 5、…