纯C语言手搓GPT-2,前OpenAI、特斯拉高管新项目火了

news2024/11/24 14:36:39

    ChatGPT狂飙160天,世界已经不是之前的样子。
新建了免费的人工智能中文站https://ai.weoknow.com
新建了收费的人工智能中文站https://ai.hzytsoft.cn/

更多资源欢迎关注


「Real men program in C.」

众所周知,大语言模型还在快速发展,应该有很多可以优化的地方。我用纯 C 语言来写,是不是能优化一大截?

也许很多人开过这样的脑洞,现在有大佬实现了。

图片

今天凌晨,前特斯拉 Autopilot 负责人、OpenAI 科学家 Andrej Karpathy 发布了一个仅用 1000 行代码即可在 CPU/fp32 上实现 GPT-2 训练的项目「llm.c」。

GitHub 链接:https://github.com/karpathy/llm.c

消息一出,立即引发了机器学习社区的热烈讨论,项目的 Star 量不到七个小时就冲上了 2000。有网友表示,大佬从零开始用 C 语言写大模型只为好玩,我等只能膜拜:

图片

llm.c 旨在让大模型(LM)训练变得简单 —— 使用纯 C 语言 / CUDA,不需要 245MB 的 PyTorch 或 107MB 的 cPython。例如,训练 GPT-2(CPU、fp32)仅需要单个文件中的大约 1000 行干净代码(clean code),可以立即编译运行,并且完全可以媲美 PyTorch 参考实现。

Karpathy 表示,选择从 GPT-2 开始,是因为它是 LLM 的鼻祖,是大语言模型体系首次以现代形式组合在一起,并且有可用的模型权重。

原始训练的实现在这里:https://github.com/karpathy/llm.c/blob/master/train_gpt2.c

你会看到,项目在开始时一次性分配所有所需的内存,这些内存是一大块 1D 内存。然后在训练过程中,不会创建或销毁任何内存,因此内存占用量保持不变,并且只是动态的,将数据批次流过。这里的关键在于手动实现所有单个层的前向和后向传递,然后将它们串联在一起。

图片

例如,这里是 layernorm 前向和后向传递。除了 layernorm 之外,我们还需要编码器、matmul、自注意力、gelu、残差、softmax 和交叉熵损失。

「一旦你拥有了所有的层,接下来的工作只是将它们串在一起。讲道理,写起来相当乏味和自虐,因为你必须确保所有指针和张量偏移都正确排列, 」Karpathy 评论道。

图片

左:我们分配一个 1D 内存数组,然后将所有模型权重和激活指向它。右:我们需要非常非常小心地进行所有指针运算。

一旦你有了前向 / 后向,其余部分(数据加载器、Adam 更新等)大多就不足为惧了。

不过,真正的乐趣现在才开始:Karpathy 表示,他现在正在逐层将其移植到 CUDA 上,以便提高效率,甚至期待能在 PyTorch 的合理范围内,但没有任何严重的依赖关系 —— 现在工作已经完成了几层。所以这是一个非常有趣的 CUDA 练习。

对此,有网友表示:即使顶着指针 ptsd,我也能感受到这些代码的美。

图片

也有人说,这项目简直就是完美的机器学习工程师在线面试答案。

从这开始,未来该项目的延伸会包括将精度从 fp32 降低到 fp16 / 以下,以及增加几个层(例如 RoPE)以支持更现代的架构,如 llama 2/mistral/gemma/ 等模型。 

最后,Andrej Karpathy 表示,一旦项目稳定起来,就会出关于从头开始用 C 语言写大模型的视频。

llm.c 下一步的目标包括:

  • 直接的 CUDA 实现,让速度更快,并且可能接近 PyTorch;

  • 使用 SIMD 指令、x86 上的 AVX2 / ARM 上的 NEON(例如苹果 M 系列芯片的电脑)来加速 CPU 版本;

  • 更多新型架构,例如 Llama2、Gemma 等。

看起来,想让速度更快的目的没有达到,这里不得不佩服 PyTorch 如今的效率。对于存储库,作者希望维护干净、简单的参考实现,以及可以接近 PyTorch 的更优化版本,但代码和依赖项只占一小部分。

使用方法

要使用 llm.c,首先要下载并 tokenize 数据集。tinyshakespeare 数据集的下载和 tokenize 速度最快:

python prepro_tinyshakespeare.py

输出:

Saved 32768 tokens to data/tiny_shakespeare_val.binSaved 305260 tokens to data/tiny_shakespeare_train.bin

.bin 文件是 int32 数字的原始字节流,使用 GPT-2 tokenizer 标记 token ID,或者也可以使用 prepro_tinystories.py tokenize TinyStories 数据集。

原则上,llm.c 到这一步已经可以训练模型。然而,基线 CPU/fp32 参考代码的效率很低,从头开始训练这些模型不切实际。因此,这里使用 OpenAI 发布的 GPT-2 权重进行初始化,然后再进行微调,所以必须下载 GPT-2 权重并将它们保存为可以在 C 中加载的检查点:

python train_gpt2.py

该脚本将下载 GPT-2 (124M) 模型,对单批数据进行 10 次迭代的过拟合,运行几个生成步骤,最重要的是,它将保存两个文件:

  • gpt2_124M.bin 文件,包含在 C 语言中加载模型所需的权重;

  • gpt2_124M_debug_state.bin 文件,包含更多调试状态:输入、目标、logits 和损失。这对于调试 C 语言代码、单元测试以及确保 llm.c 与 PyTorch 参考实现完全可媲美非常重要。

现在,使用 gpt2_124M.bin 中的模型权重进行初始化并使用纯 C 语言进行训练,首先编译代码:

make train_gpt2

这里可以查看 Makefile 及其注释。它将尝试自动检测 OpenMP 在当前系统上是否可用,这对于以极低的代码复杂性成本加速代码非常有帮助。编译 train_gpt2 后,运行:

OMP_NUM_THREADS=8 ./train_gpt2

这里应该根据 CPU 的核心数量来调整线程数量。该程序将加载模型权重、token,并使用 Adam 运行几次迭代的微调 loop,然后从模型生成样本。在 MacBook Pro (Apple Silicon M3 Max) 上,输出如下所示:

[GPT-2]max_seq_len: 1024vocab_size: 50257num_layers: 12num_heads: 12channels: 768num_parameters: 124439808train dataset num_batches: 1192val dataset num_batches: 128num_activations: 73323776val loss 5.252026step 0: train loss 5.356189 (took 1452.121000 ms)step 1: train loss 4.301069 (took 1288.673000 ms)step 2: train loss 4.623322 (took 1369.394000 ms)step 3: train loss 4.600470 (took 1290.761000 ms)... (trunctated) ...step 39: train loss 3.970751 (took 1323.779000 ms)val loss 4.107781generated: 50256 16773 18162 21986 11 198 13681 263 23875 198 3152 262 11773 2910 198 1169 6002 6386 2583 286 262 11858 198 20424 428 3135 7596 995 3675 13 198 40 481 407 736 17903 11 329 703 6029 706 4082 198 42826 1028 1128 633 263 11 198 10594 407 198 2704 454 680 1028 262 1027 28860 286 198 3237 323step 40: train loss 4.377757 (took 1366.368000 ms)

但这一步生成的只是 token ID,还需要将其解码回文本。这一点可以很容易地用 C 语言实现,因为解码非常简单,可以使用 tiktoken:

import tiktokenenc = tiktoken.get_encoding("gpt2")print(enc.decode(list(map(int, "50256 16773 18162 21986 11 198 13681 263 23875 198 3152 262 11773 2910 198 1169 6002 6386 2583 286 262 11858 198 20424 428 3135 7596 995 3675 13 198 40 481 407 736 17903 11 329 703 6029 706 4082 198 42826 1028 1128 633 263 11 198 10594 407 198 2704 454 680 1028 262 1027 28860 286 198 3237 323".split()))))

输出:

<|endoftext|>Come Running Away,Greater conquerWith the Imperial bloodthe heaviest host of the godsinto this wondrous world beyond.I will not back thee, for how sweet after birthNetflix against repounder,will notflourish against the earlocks ofAllay

值得注意的是,这里没有尝试调整微调超参数,因此很可能还有大幅改进的空间,特别是在训练时间更长的情况下。

附上一个简单的单元测试,以确保 C 代码与 PyTorch 代码一致。编译并运行:

make test_gpt2./test_gpt2

这里加载 gpt2_124M_debug_state.bin 文件,运行前向传递,将 logits 和损失与 PyTorch 参考实现进行比较,然后使用 Adam 进行 10 次迭代训练,确保损失可与 PyTorch 参考实现媲美。

图片

最后,Karpathy 还附上了一个简单的教程。这是一个简单的分步指南,用于实现 GPT-2 模型的单层(layernorm 层),可以帮助你理解如何用 C 语言实现语言模型。

教程地址:doc/layernorm/layernorm.md

我们知道,最近 Andrej Karpathy 沉迷于制作教程。去年 11 月,他录制的《大语言模型入门》在 YouTube 上吸引了很多人观看。

图片

这次新项目的配套视频什么时候出?我们都很期待。

    ChatGPT狂飙160天,世界已经不是之前的样子。
新建了免费的人工智能中文站https://ai.weoknow.com
新建了收费的人工智能中文站https://ai.hzytsoft.cn/

更多资源欢迎关注


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1580804.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

云岚到家项目

一.项目介绍 云岚到家项目是一个家政服务o2o平台&#xff0c;互联网家政是继打车、外卖后的又一个风口&#xff0c;创业者众多&#xff0c;比如&#xff1a;58到家&#xff0c;天鹅到家等&#xff0c;o2o&#xff08;Online To Offline&#xff09;是将线下商务的机会与互联网…

el-table实现表格内部横向拖拽效果

2024.4.2今天我学习了如何对el-table表格组件实现内部横向拖拽的效果&#xff0c;效果&#xff1a; 代码如下&#xff1a; 一、创建utils/底下文件 const crosswise_drag_table function (Vue){// 全局添加table左右拖动效果的指令Vue.directive(tableMove, {bind: function…

C/C++如何快速学习?少走3年弯路

于我而言&#xff0c;最开始学习就是 C&#xff0c;除了计算机专业&#xff0c;其他专业可能学习的第一门编程语言为 C 语言&#xff0c;还是谭浩强爷爷那本&#xff0c;当时想着有点 C 基础&#xff0c;无外乎就是 C 语言的升级版&#xff0c;于是开启了 C 的路程。 语言这个…

归档模式下,物理删除数据文件的完全的恢复

归档模式下&#xff0c;物理删除数据文件的完全的恢复 1、实验环境 环境归档模式 SQL> archive log list Database log mode Archive Mode Automatic archival Enabled Archive destination /arch/archivelog Oldest online log seq…

【STL】stack与queue的底层原理及其实现

文章目录 stack的介绍库中stack的使用栈的模拟实现queue的介绍库中queue的使用queue的模拟实现 stack的介绍 &#xff08;图片来自知乎&#xff09; 1.stack是一种容器适配器&#xff0c;模拟了栈的数据结构。数据只能从一端进去&#xff0c;另一端出来&#xff08;先进后出&am…

需求分析及设计定义

背景 经过不断的折腾&#xff0c;一切过程都是为了呈现输出&#xff0c;这个阶段就是要交付需求和方案的环节了&#xff0c;很多失败的项目就是上来就到这个环节&#xff0c;倒着捣鼓&#xff0c;先写个文档&#xff0c;做个原型&#xff0c;甚至提出方案&#xff0c;然后再和…

Microsoft Visio 参与者 [actor] - 人的形状图标

Microsoft Visio 参与者 [actor] - 人的形状图标 1. 更多形状 -> 搜索形状2. 参与者References 1. 更多形状 -> 搜索形状 2. 参与者 References [1] Yongqiang Cheng, https://yongqiang.blog.csdn.net/

【Node】Node的配置文件的使用,dotenv框架的使用

&#x1f601; 作者简介&#xff1a;一名大四的学生&#xff0c;致力学习前端开发技术 ⭐️个人主页&#xff1a;夜宵饽饽的主页 ❔ 系列专栏&#xff1a;Node.js &#x1f450;学习格言&#xff1a;成功不是终点&#xff0c;失败也并非末日&#xff0c;最重要的是继续前进的勇…

CodeMirror使用: 编写一个在线编辑HTML、JS、CSS文件,网页的模板页面-初实现

前言&#xff1a;前几天编写一个UI模板控制的功能&#xff0c;根据上传的前端模板更换跳转入口主题页面&#xff1b;在编写的时候&#xff0c;突发奇想能不能在列表页面进行在线编辑刚刚上传的模板zip压缩包里的页面...于是经过学习研究有了这篇文章&#xff1b;当日记本一样记…

鸿蒙开发面向对象的面试题~

鸿蒙开发面向对象的面试题是近年来在软件开发领域中备受关注的话题。作为一种新兴的操作系统&#xff0c;鸿蒙系统的开发者需要具备扎实的面向对象编程知识和丰富的开发经验。在面试中&#xff0c;面试官常常会通过一系列的问题来考察面试者对于鸿蒙开发面向对象的理解和应用能…

LeetCode 289.生命游戏————2024 春招冲刺百题计划

根据 百度百科 &#xff0c; 生命游戏 &#xff0c;简称为 生命 &#xff0c;是英国数学家约翰何顿康威在 1970 年发明的细胞自动机。 给定一个包含 m n 个格子的面板&#xff0c;每一个格子都可以看成是一个细胞。每个细胞都具有一个初始状态&#xff1a; 1 即为 活细胞 &am…

python-可视化篇-turtle-画爱心

文章目录 原效果替换关键字5为8&#xff0c;看看效果改下颜色 原效果 import turtle as tt.color(red,pink) t.begin_fill() t.width(5) t.left(135) t.fd(100) t.right(180) t.circle(50,-180) t.left(90) t.circle(50,-180) t.right(180) t.fd(100) t.pu() t.goto(50,-30) t…

[ritsec CTF 2024] 密码部分

这个比较密码这块还是比较简单的&#xff0c;经过问了N人以后终于完成。 [Warm Up] Words 给了个猪圈密码的图片&#xff0c;这东西好久不见的感觉。 [Warm Up] Emails MTP似乎也没多好的方法&#xff0c;猜更快&#xff0c;先给了几封email然后一个用MTP长度是32&#xff08…

因为使用ArrayList.removeAll(List list)导致的机器重启

背景 先说一下背景&#xff0c;博主所在的业务组有一个核心系统&#xff0c;需要同步两个不同数据源给过来的数据到redis中&#xff0c;但是每次同步之前需要过滤掉一部分数据&#xff0c;只存储剩下的数据。每次同步的数据与需要过滤掉的数据量级大概在0-100w的数据不等。 由…

MYSQL 8.0版本修改用户密码(知道登录密码)和Sqlyog错误码2058一案

今天准备使用sqlyog连接一下我Linux上面的mysql数据库&#xff0c;然后就报如下错误 有一个简单的办法就是修改密码为password就完事!然后我就开始查找如何修改密码! 如果是需要解决Sqlyog错误码2058的话&#xff0c;执行以下命令&#xff0c;但是注意root对应host是不是loca…

python的下载及安装

python的下载及安装 1&#xff0c;https://www.python.org 百度直接搜索python官网 2&#xff0c; 3&#xff0c;选择路径下载后&#xff0c;双击你下载的那个电脑图标应用程序 4. 1&#xff09;勾选Add Python 3.6 to PATH是把Python的安装路径添加到系统环境变量的Path变…

关于Ansible模块 ④

转载说明&#xff1a;如果您喜欢这篇文章并打算转载它&#xff0c;请私信作者取得授权。感谢您喜爱本文&#xff0c;请文明转载&#xff0c;谢谢。 继《关于Ansible的模块 ①》、《关于Ansible的模块 ②》与《关于Ansible的模块 ③》之后&#xff0c;继续学习ansible常用模块之…

蓝桥杯-阿坤老师的魔方挑战

图示: 代码: #include <iostream> using namespace std; int main() {int N,i,j,row,col,sum,max0;cin>>N;int ar[N][N];for(i0;i<N;i){for(j0;j<N;j){cin>>ar[i][j];}//输入矩阵 }for(i0;i<N;i){row0;coli;sum0;//重新初始化while(row<N){if(c…

Go 实战|使用 Wails 构建轻量级的桌面应用:仿微信登录界面 Demo

概述 本文探讨 Wails 框架的使用&#xff0c;从搭建环境到开发&#xff0c;再到最终的构建打包&#xff0c;本项目源码 GitHub 地址&#xff1a;https://github.com/mazeyqian/go-run-wechat-demo 前言 Wails 是一个跨平台桌面应用开发框架&#xff0c;他允许开发者利用 Go …

数据库 06-02 并发控制(锁,死锁,多粒度)

01 02. 互斥访问数据 分成两种&#xff1a; 事务控制器的作用 共享锁之间可以相容&#xff0c;但是任何一个共享锁和每一种排他锁都是互斥的 申请共享锁的命令和申请排他锁命令 如果存在排他锁&#xff0c;必须等待 只要对一个数据项&#xff0c;有读写方法&#xff…