竞赛 卷积神经网络手写字符识别 - 深度学习

news2024/11/6 9:41:49

文章目录

  • 0 前言
  • 1 简介
  • 2 LeNet-5 模型的介绍
    • 2.1 结构解析
    • 2.2 C1层
    • 2.3 S2层
      • S2层和C3层连接
    • 2.4 F6与C5层
  • 3 写数字识别算法模型的构建
    • 3.1 输入层设计
    • 3.2 激活函数的选取
    • 3.3 卷积层设计
    • 3.4 降采样层
    • 3.5 输出层设计
  • 4 网络模型的总体结构
  • 5 部分实现代码
  • 6 在线手写识别
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 卷积神经网络手写字符识别 - 深度学习

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 简介

该设计学长使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统。

这是学长做的深度学习demo,大家可以用于毕业设计。

这里学长不会以论文的形式展现,而是以编程实战完成深度学习项目的角度去描述。

项目要求:主要解决的问题是手写数字识别,最终要完成一个识别系统。

设计识别率高的算法,实现快速识别的系统。

2 LeNet-5 模型的介绍

学长实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示:

在这里插入图片描述

2.1 结构解析

这是原始的应用于手写数字识别的网络,我认为这也是最简单的深度网络。

LeNet-5不包括输入,一共7层,较低层由卷积层和最大池化层交替构成,更高层则是全连接和高斯连接。

LeNet-5的输入与BP神经网路的不一样。这里假设图像是黑白的,那么LeNet-5的输入是一个32*32的二维矩阵。同
时,输入与下一层并不是全连接的,而是进行稀疏连接。本层每个神经元的输入来自于前一层神经元的局部区域(5×5),卷积核对原始图像卷积的结果加上相应的阈值,得出的结果再经过激活函数处理,输出即形成卷积层(C层)。卷积层中的每个特征映射都各自共享权重和阈值,这样能大大减少训练开销。降采样层(S层)为减少数据量同时保存有用信息,进行亚抽样。

2.2 C1层

第一个卷积层(C1层)由6个特征映射构成,每个特征映射是一个28×28的神经元阵列,其中每个神经元负责从5×5的区域通过卷积滤波器提取局部特征。一般情况下,滤波器数量越多,就会得出越多的特征映射,反映越多的原始图像的特征。本层训练参数共6×(5×5+1)=156个,每个像素点都是由上层5×5=25个像素点和1个阈值连接计算所得,共28×28×156=122304个连接。

2.3 S2层

S2层是对应上述6个特征映射的降采样层(pooling层)。pooling层的实现方法有两种,分别是max-pooling和mean-
pooling,LeNet-5采用的是mean-
pooling,即取n×n区域内像素的均值。C1通过2×2的窗口区域像素求均值再加上本层的阈值,然后经过激活函数的处理,得到S2层。pooling的实现,在保存图片信息的基础上,减少了权重参数,降低了计算成本,还能控制过拟合。本层学习参数共有1*6+6=12个,S2中的每个像素都与C1层中的2×2个像素和1个阈值相连,共6×(2×2+1)×14×14=5880个连接。

S2层和C3层连接

S2层和C3层的连接比较复杂。C3卷积层是由16个大小为10×10的特征映射组成的,当中的每个特征映射与S2层的若干个特征映射的局部感受野(大小为5×5)相连。其中,前6个特征映射与S2层连续3个特征映射相连,后面接着的6个映射与S2层的连续的4个特征映射相连,然后的3个特征映射与S2层不连续的4个特征映射相连,最后一个映射与S2层的所有特征映射相连。

此处卷积核大小为5×5,所以学习参数共有6×(3×5×5+1)+9×(4×5×5+1)+1×(6×5×5+1)=1516个参数。而图像大小为28×28,因此共有151600个连接。

S4层是对C3层进行的降采样,与S2同理,学习参数有16×1+16=32个,同时共有16×(2×2+1)×5×5=2000个连接。
C5层是由120个大小为1×1的特征映射组成的卷积层,而且S4层与C5层是全连接的,因此学习参数总个数为120×(16×25+1)=48120个。

2.4 F6与C5层

F6是与C5全连接的84个神经元,所以共有84×(120+1)=10164个学习参数。

卷积神经网络通过通过稀疏连接和共享权重和阈值,大大减少了计算的开销,同时,pooling的实现,一定程度上减少了过拟合问题的出现,非常适合用于图像的处理和识别。

3 写数字识别算法模型的构建

3.1 输入层设计

输入为28×28的矩阵,而不是向量。

在这里插入图片描述

3.2 激活函数的选取

Sigmoid函数具有光滑性、鲁棒性和其导数可用自身表示的优点,但其运算涉及指数运算,反向传播求误差梯度时,求导又涉及乘除运算,计算量相对较大。同时,针对本文构建的含有两层卷积层和降采样层,由于sgmoid函数自身的特性,在反向传播时,很容易出现梯度消失的情况,从而难以完成网络的训练。因此,本文设计的网络使用ReLU函数作为激活函数。

在这里插入图片描述

3.3 卷积层设计

学长设计卷积神经网络采取的是离散卷积,卷积步长为1,即水平和垂直方向每次运算完,移动一个像素。卷积核大小为5×5。

3.4 降采样层

学长设计的降采样层的pooling方式是max-pooling,大小为2×2。

3.5 输出层设计

输出层设置为10个神经网络节点。数字0~9的目标向量如下表所示:

在这里插入图片描述

4 网络模型的总体结构

在这里插入图片描述

5 部分实现代码

使用Python,调用TensorFlow的api完成手写数字识别的算法。

注:我的程序运行环境是:Win10,python3.。

当然,也可以在Linux下运行,由于TensorFlow对py2和py3兼容得比较好,在Linux下可以在python2.7中运行。



    #!/usr/bin/env python2
    # -*- coding: utf-8 -*-
    """
    @author: 丹成学长 Q746876041
    """
    
    #import modules
    import numpy as np
    import matplotlib.pyplot as plt
    #from sklearn.metrics import confusion_matrix
    import tensorflow as tf
    import time
    from datetime import timedelta
    import math
    from tensorflow.examples.tutorials.mnist import input_data


    def new_weights(shape):
      return tf.Variable(tf.truncated_normal(shape,stddev=0.05))
    def new_biases(length):
      return tf.Variable(tf.constant(0.1,shape=length))
    def conv2d(x,W):
      return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
    def max_pool_2x2(inputx):
      return tf.nn.max_pool(inputx,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
    
    #import data
    data = input_data.read_data_sets("./data", one_hot=True) # one_hot means [0 0 1 0 0 0 0 0 0 0] stands for 2
    
    print("Size of:")
    print("--Training-set:\t\t{}".format(len(data.train.labels)))
    print("--Testing-set:\t\t{}".format(len(data.test.labels)))
    print("--Validation-set:\t\t{}".format(len(data.validation.labels)))
    data.test.cls = np.argmax(data.test.labels,axis=1)  # show the real test labels: [7 2 1 ..., 4 5 6], 10000values
    
    x = tf.placeholder("float",shape=[None,784],name='x')
    x_image = tf.reshape(x,[-1,28,28,1])
    
    y_true = tf.placeholder("float",shape=[None,10],name='y_true')
    y_true_cls = tf.argmax(y_true,dimension=1)
    # Conv 1
    layer_conv1 = {"weights":new_weights([5,5,1,32]),
            "biases":new_biases([32])}
    h_conv1 = tf.nn.relu(conv2d(x_image,layer_conv1["weights"])+layer_conv1["biases"])
    h_pool1 = max_pool_2x2(h_conv1)
    # Conv 2
    layer_conv2 = {"weights":new_weights([5,5,32,64]),
            "biases":new_biases([64])}
    h_conv2 = tf.nn.relu(conv2d(h_pool1,layer_conv2["weights"])+layer_conv2["biases"])
    h_pool2 = max_pool_2x2(h_conv2)
    # Full-connected layer 1
    fc1_layer = {"weights":new_weights([7*7*64,1024]),
          "biases":new_biases([1024])}
    h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,fc1_layer["weights"])+fc1_layer["biases"])
    # Droupout Layer
    keep_prob = tf.placeholder("float")
    h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
    # Full-connected layer 2
    fc2_layer = {"weights":new_weights([1024,10]),
           "biases":new_weights([10])}
    # Predicted class
    y_pred = tf.nn.softmax(tf.matmul(h_fc1_drop,fc2_layer["weights"])+fc2_layer["biases"]) # The output is like [0 0 1 0 0 0 0 0 0 0]
    y_pred_cls = tf.argmax(y_pred,dimension=1) # Show the real predict number like '2'
    # cost function to be optimized
    cross_entropy = -tf.reduce_mean(y_true*tf.log(y_pred))
    optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)
    # Performance Measures
    correct_prediction = tf.equal(y_pred_cls,y_true_cls)
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
    with tf.Session() as sess:
      init = tf.global_variables_initializer()
      sess.run(init)
      train_batch_size = 50
      def optimize(num_iterations):
        total_iterations=0
        start_time = time.time()
        for i in range(total_iterations,total_iterations+num_iterations):
          x_batch,y_true_batch = data.train.next_batch(train_batch_size)
          feed_dict_train_op = {x:x_batch,y_true:y_true_batch,keep_prob:0.5}
          feed_dict_train = {x:x_batch,y_true:y_true_batch,keep_prob:1.0}
          sess.run(optimizer,feed_dict=feed_dict_train_op)
          # Print status every 100 iterations.
          if i%100==0:
            # Calculate the accuracy on the training-set.
            acc = sess.run(accuracy,feed_dict=feed_dict_train)
            # Message for printing.
            msg = "Optimization Iteration:{0:>6}, Training Accuracy: {1:>6.1%}"
            # Print it.
            print(msg.format(i+1,acc))
        # Update the total number of iterations performed
        total_iterations += num_iterations
        # Ending time
        end_time = time.time()
        # Difference between start and end_times.
        time_dif = end_time-start_time
        # Print the time-usage
        print("Time usage:"+str(timedelta(seconds=int(round(time_dif)))))
      test_batch_size = 256
      def print_test_accuracy():
        # Number of images in the test-set.
        num_test = len(data.test.images)
        cls_pred = np.zeros(shape=num_test,dtype=np.int)
        i = 0
        while i < num_test:
          # The ending index for the next batch is denoted j.
          j = min(i+test_batch_size,num_test)
          # Get the images from the test-set between index i and j
          images = data.test.images[i:j, :]
          # Get the associated labels
          labels = data.test.labels[i:j, :]
          # Create a feed-dict with these images and labels.
          feed_dict={x:images,y_true:labels,keep_prob:1.0}
          # Calculate the predicted class using Tensorflow.
          cls_pred[i:j] = sess.run(y_pred_cls,feed_dict=feed_dict)
          # Set the start-index for the next batch to the
          # end-index of the current batch
          i = j
        cls_true = data.test.cls
        correct = (cls_true==cls_pred)
        correct_sum = correct.sum()
        acc = float(correct_sum) / num_test
        # Print the accuracy
        msg = "Accuracy on Test-Set: {0:.1%} ({1}/{2})"
        print(msg.format(acc,correct_sum,num_test))
      # Performance after 10000 optimization iterations
      optimize(num_iterations=10000)
      print_test_accuracy()
      savew_hl1 = layer_conv1["weights"].eval()
      saveb_hl1 = layer_conv1["biases"].eval()
      savew_hl2 = layer_conv2["weights"].eval()
      saveb_hl2 = layer_conv2["biases"].eval()
      savew_fc1 = fc1_layer["weights"].eval()
      saveb_fc1 = fc1_layer["biases"].eval()
      savew_op = fc2_layer["weights"].eval()
      saveb_op = fc2_layer["biases"].eval()
    
      np.save("savew_hl1.npy", savew_hl1)
      np.save("saveb_hl1.npy", saveb_hl1)
      np.save("savew_hl2.npy", savew_hl2)
      np.save("saveb_hl2.npy", saveb_hl2)
      np.save("savew_hl3.npy", savew_fc1)
      np.save("saveb_hl3.npy", saveb_fc1)
      np.save("savew_op.npy", savew_op)
      np.save("saveb_op.npy", saveb_op)



运行结果显示:测试集中准确率大概为99.2%。

在这里插入图片描述
查看混淆矩阵

在这里插入图片描述

6 在线手写识别

请添加图片描述

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1579738.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DS-Net:可落地的动态网络,实际加速1.62倍,快改造起来 | CVPR 2021 Oral

论文提出能够适配硬件加速的动态网络DS-Net&#xff0c;通过提出的double-headed动态门控来实现动态路由。基于论文提出的高性能网络设计和IEB、SGS训练策略&#xff0c;仅用1/2-1/4的计算量就能达到静态SOTA网络性能&#xff0c;实际加速也有1.62倍   来源&#xff1a;晓飞的…

Gradle 依赖管理-ApiHug准备-工具篇-004

&#x1f917; ApiHug {Postman|Swagger|Api...} 快↑ 准√ 省↓ GitHub - apihug/apihug.com: All abou the Apihug apihug.com: 有爱&#xff0c;有温度&#xff0c;有质量&#xff0c;有信任ApiHug - API design Copilot - IntelliJ IDEs Plugin | Marketplace ApiHug …

比特币革命:刚刚开始

作者&#xff1a;Marius Farashi Tasooji 编译&#xff1a;秦晋 要充分理解比特币及其含义&#xff0c;首先必须理解什么是价值&#xff0c;什么是货币。以及是什么赋予资产价值&#xff1f; 这个问题看似愚蠢&#xff0c;但实际上非常有趣。我们的生活是由我们消费或出售的物品…

每日OJ题_两个数组dp④_力扣44. 通配符匹配

目录 力扣44. 通配符匹配 解析代码 力扣44. 通配符匹配 44. 通配符匹配 难度 困难 给你一个输入字符串 (s) 和一个字符模式 (p) &#xff0c;请你实现一个支持 ? 和 * 匹配规则的通配符匹配&#xff1a; ? 可以匹配任何单个字符。* 可以匹配任意字符序列&#xff08;包…

计算机网络 网络命令的使用

一、实验内容 1.PING网络命令的实验 ping 127.0.0.1(内部回环测试)ping 本主机的IP地址ping 默认网关地址ping远端目的地的IP地址ping localhostping域名 2.其他网络命令实验 命令用途ipconfig/all 显示当前系统网络配置&#xff0c;包括IP地址、子网掩码、默认网关等trace…

四级作文模板——议论文——现象解释

议论文类型 现象解释 第一句 with the rapid development of society / economy / education / technology / culture / medical / service(任选) , it is of great necessity for youngster / students to improve our speaking ability.随着社会/经济/教育/科技/文化/医疗…

生产车间图纸无纸化,生产车间图纸无纸化解决方案

生产车间图纸无纸化是指通过采用数字化设备和技术&#xff0c;将传统的纸质图纸转化为电子文档&#xff0c;并在生产过程中实现图纸的电子化、网络化和自动化管理。这一转变旨在提高工作效率、降低成本、提高安全性&#xff0c;并推动生产车间的现代化和智能化。 实现生产车间图…

选择排序解读

在计算机科学中&#xff0c;排序算法是一种将数据元素按照某种顺序排列的算法。今天&#xff0c;我们要探讨的是选择排序&#xff08;Selection Sort&#xff09;&#xff0c;这是一种简单直观的排序方法&#xff0c;通过不断选择剩余元素中的最小&#xff08;或最大&#xff0…

【算法统治世界】动态规划 个人笔记总结

&#x1f389;&#x1f389;欢迎光临&#x1f389;&#x1f389; &#x1f3c5;我是苏泽&#xff0c;一位对技术充满热情的探索者和分享者。&#x1f680;&#x1f680; &#x1f31f;特别推荐给大家我的最新专栏《数据结构与算法&#xff1a;初学者入门指南》&#x1f4d8;&am…

Ubuntu20.04连接不了无线网

1.首先查看网卡型号 lspci Network controller显示的就是网卡型号 也可以使用如下命令 lspci -nnk | grep 0280 -A3 2.找到对应的驱动并下载安装 我的电脑的网卡型号为Realtek Semiconductor Co., Ltd. Device b852&#xff0c;则采用如下命令安装&#xff1a; sudo ap…

langchain-chatchat加载Azure Open AI

1.找到knowledge_base_chat.py文件中的get_ChatOpenAI函数 2.按crtl进入get_ChatOpenAI函数位置 3.注释原先的get_ChatOpenAI函数&#xff0c;修改成以下内容&#xff1a; def get_ChatOpenAI(model_name: str,temperature: float,streaming: bool True,callbacks: List[Ca…

等保2(1),最新出炉

9.密码管理 c)采用硬件密码模块实现密码运算和密钥管理 10.变更管理 11.备份与恢复管理 12.安全事件处置 c&#xff09;应建立联合防护和应急机制&#xff0c;负责处置跨单位安全事件 13.应急预案管理 e&#xff09;应建立重大安全事件的跨单位联合应急预案&#xff0c;并进…

二:什么是RocketMQ

RocketMQ是阿里开源的消息中间件产品&#xff0c;纯Java开发&#xff0c;具有高吞吐量、高可用性、适合大规模分布式系统应用的特点,性能强劲(零拷贝技术)&#xff0c;支持海量堆积,在阿里内部进行大规模使用&#xff0c;适合在互联网与高并发系统中应用。 官方文档&#xff1a…

2024年,AIGC如何渗透我的生活?

本篇博文列举本人最常用的 6 款app中 AIGC 发挥的功能及作用。 Cursor 作为一名科研工作者&#xff0c;平时最常用的软件就是代码编写工具。Cursor内置的Chat功能&#xff0c;可以辅助完成代码编辑&#xff0c;随时随地实现ChatGPT私有化。 Grammarly 可用于Word和Overleaf等…

创建型模式--4.抽象工厂模式【弗兰奇一家】

1. 奔向大海 在海贼世界中&#xff0c;位于水之都的弗兰奇一家是由铁人弗兰奇所领导的以拆船为职业的家族&#xff0c;当然了他们的逆向工程做的也很好&#xff0c;会拆船必然会造船。船是海贼们出海所必备的海上交通工具&#xff0c;它由很多的零件组成&#xff0c;从宏观上看…

41---音频电路设计

视频链接 音频电路设计01_哔哩哔哩_bilibili 音频电路设计 1、音频基本介绍 1.1、设备 1.1.1、音频接口 型号&#xff1a;ABA-JAK-038-K44 电脑主机上的音频输出插口&#xff0c;一个是粉色的&#xff0c;用来连接麦克风或话筒&#xff0c;一个是绿色的&#xff0c;用来连…

item_review获取商品评论API接口采集用户评论数据接入示例

要获取商品评论API接口采集用户评论数据&#xff0c;首先需要了解API的具体请求方式、参数以及返回数据格式。以下是一个示例&#xff08;获取API接入KEY&#xff09;&#xff1a; 名称类型必须描述keyString是调用key&#xff08;必须以GET方式拼接在URL中&#xff09;secret…

leetcode之704 二分查找

文章目录 每日碎碎念一、题目要求及测试点704 二分查找测试点提示 二、题解自己上手正经题解二分法之左闭右闭二分法之左闭右开 三、总结 每日碎碎念 苦痛生活今日起 从今天开始LeetCode打卡&#xff0c;一边重新刷题&#xff0c;一边春招等笔面试&#xff0c;人生苦痛… 一、…

可视化大屏的应用(9):设备运行监控的应用案例

通过可视化大屏&#xff0c;监控人员可以更加直观地了解设备的运行情况&#xff0c;及时发现问题并进行处理&#xff0c;提高设备的稳定性和可靠性&#xff0c;大千UI工场本期带来相关利用的案例&#xff0c;欢迎友友们品鉴。 可视化大屏在设备运行监控领域有以下作用&#xf…

数据结构:构建完全二叉查找树

文章目录 1、步骤 1: 对给定数组排序2、步骤 2: 递归构建完全二叉查找树3、注意4、在有序数组中寻找根结点位置5、代码实现6、其他方法&#xff1f;基本思路插入操作删除操作特别考虑 对于一个给定序列的二叉查找树&#xff0c;有很多种&#xff0c;但是完全二叉查找树只有一种…