【Week-Y4】修改yolov5s中C3模块的结构,common.py文件解读

news2025/1/19 14:15:17

修改C3模块的结构

  • 一、commom.py文件解析
  • 二、修改代码,运行train.py训练

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

📕本次任务:将yolov5s网络模型中C3模块中的结构按照如下方式修改,并跑通YOLOv5。
在这里插入图片描述
如左图,有3个conv模块,需要改为右图,右图只包含2个conv模块。
📕提示:仅需修改./models/common.py文件
📕步骤:
(1)首先找到coomon.py中定义C3模块的地方;
(2)然后将代码与上图的左图对应起来,观察需要改动的位置,结合结构,更容易看懂代码;
(3)找到之后按照要求修改,并运行train.py,看是否能跑通。

./models/common.py中,保存的是v5s各个模块的实现,包括基本模块(如autopad、Conv、Bottleneck、BottleneckCSP、C3、SPP、Concat、Expand和Contract)和重要模块(NMS、AutoShape、Detections、Classify)。

一、commom.py文件解析

yolov5-master的文件结构如下:

yolov5-master
|-classify
|-data
|-models (本次学习需要的文件在这里面)
	|-hub
	|-segment
	|-common.py(这是本次学习需要修改的文件,文件内容是yolov5s各个模块的定义)
	|-experi,emtal.py
	|-tf.py
	...
|-runs
|-segment
|-utils
...

打开common.py文件,找到定义C3模块的位置:

class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initializes C3 module with options for channel count, bottleneck repetition, shortcut usage, group
        convolutions, and expansion.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        """Performs forward propagation using concatenated outputs from two convolutions and a Bottleneck sequence."""
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

这一段代码中定义了C3的模块结构,初始化时定义了3个卷积结构,然后在forward函数内部,给出了该模块的返回值,将返回值self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))拆解,并与给出的C3结构一一对应,得到下图:
在这里插入图片描述
由此可知,去掉concat后的卷积只需要将返回值的最外层丢掉即可。

二、修改代码,运行train.py训练

C3模块修改如下:【注释的那行是原来的结构,也就是concat后还经过了conv】
在这里插入图片描述
数据集:水果数据集 【使用week Y2的数据集】
命令行:python .\train.py --img 900 --batch 2 --epoch 100 --data .\fruit.yaml --cfg .\models\yolov5s.yaml --weights .\yolov5s.pt --device cpu【与week Y2的训练命令是一样的】

开始训练:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1568863.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LangChain入门:11.Pydantic(JSON)解析器实战

摘要 在数字化营销的浪潮中,自动化内容生成成为了提升效率和用户参与度的利器。本文将详细介绍如何利用LangChain的自然语言处理能力和Pydantic的数据验证特性,构建一个自动化的花店文案生成器。通过这个工具,您可以快速为各种花卉生成吸引人…

LLM:检索增强生成(RAG)

1 Embedding技术 简单地说,嵌入(Embedding)思想可以视为一种尝试通过用向量来表示所有东西的“本质”的方法,其特性是“相近的事物”由相近的数表示。 1.1 文本向量(Text Embedding) 在GPT中,文本嵌入(Text Embedding)是通过将输入文本中的每…

哲♂学家带你用顺序表实现通讯录

实现通讯录能使我们进一步加深对顺序表的理解,接下来就由本哲♂学家带你手把手实现通信录。 其中需要用到顺序表的知识可以点击下面链接了解:http://t.csdnimg.cn/9SjGd话不多说,我们♂开始吧。 一、通讯录头文件声明 由于我们前面已经写过…

随机生成Long全范围数

随机生成Long全范围数 前言实现思路主要代码分区随机生成过程案例:随机生成100个数 朴素的比较总结 前言 使用自带的Random.nextLong()函数生成Long型的长整数,范围比较小,如下图。100个随机数没看见10以内的数字。所以考虑实现随机化生成大…

基于注意力整合的超声图像分割信息在乳腺肿瘤分类中的应用

基于注意力整合的超声图像分割信息在乳腺肿瘤分类中的应用 摘要引言方法 Segmentation information with attention integration for classification of breast tumor in ultrasound image 摘要 乳腺癌是世界范围内女性最常见的癌症之一。基于超声成像的计算机辅助诊断&#x…

scp和rsync

引言 我们平时总会有在不同的设备之间传输文件的需要,好友同事间可以用微信、QQ、网盘等,还是比较方便安全的。而在linux的操作系统中,我们经常需要两台机器之间拷贝文件,或者由于业务需要备份文件,那就不得不用到scp和…

【React】基于JS 3D引擎库实现关系图(图graph)

主角:3D Force-Directed Graph 简介:一个使用ThreeJS/WebGL进行3D渲染的Graph图库 GitHub: https://github.com/vasturiano/3d-force-graph Ps: 较为复杂或节点巨大时,对GPU>CPU消耗较大,同量级节点对比下优于AntV G6和Echarts…

C语言之分支语句和循环语句

前言 一、什么是语句? 二、分支语句(选择结构) 2.1 if语句 2.2 switch语句 三、循环语句 3.1 while循环 3.2 break与continue语句 3.3 getchar()与putchar() 3.3.1 缓冲区 3.4 for循环 3.4.1 一些for循环的变种 3.5 do...while循…

java运行时内存

从jdk1.7以及以后,静态变量和常量池存在堆空间。

【TSP旅行商问题】改进的大邻域搜索算法LNS

课题名称:基于改进的大规模邻域搜索算法LNS求解TSP问题 版本时间:2024-04-01 程序运行:直接运行LNS_TSP.m 文件即可 代码获取方式: QQ:491052175 VX:Matlab_Lover 模型介绍: 第一步&…

[AutoSar]BSW_Memory_Stack_004 创建一个简单NV block并调试

目录 关键词平台说明背景一、需求二、配置2.1 NvMBlockDescriptors2.2 NvMFeeRef2.3 FeeBlockConfigurations 三、code3.1 声明和定义3.2 调试 关键词 嵌入式、C语言、autosar、OS、BSW 平台说明 项目ValueOSautosar OSautosar厂商vector , EB芯片厂商TI 英飞凌编…

SpringBoot -- 外部化配置

我们如果要对普通程序的jar包更改配置,那么我们需要对jar包解压,并在其中的配置文件中更改配置参数,然后再打包并重新运行。可以看到过程比较繁琐,SpringBoot也注意到了这个问题,其可以通过外部配置文件更新配置。 我…

钉钉事件订阅前缀树算法gin框架解析

当钉钉监测到发生一些事件,如下图 此处举例三个事件user_add_org、user_change_org、user_leave_org,传统的做法是,我们写三个if条件,类似下图 这样字符串匹配效率比较低,于是联想到gin框架中的路由匹配算法&#xff0…

利用Spark将Kafka数据流写入HDFS

利用Spark将Kafka数据流写入HDFS 在当今的大数据时代,实时数据处理和分析变得越来越重要。Apache Kafka作为一个分布式流处理平台,已经成为处理实时数据的事实标准。而Apache Spark则是一个强大的大数据处理框架,它提供了对数据进行复杂处理…

Linux操作系统之nfs网络文件系统

目录 一、NFS简介 1.2 安装配置NFS 一、NFS简介 nfs类似于windows文件共享 将linux的一个目录共享到网络中,网络中的其他所有主机都可以使用这个共享目录中的文件 samba 文件共享 可以在linux中通过samba共享一个目录,然后在linux中可以访问这个共享 …

55 npm run serve 和 npm run build 的分包策略

前言 这里我们来看一下 vue 这边 打包的时候的一些 拆分包的一些策略 我们经常会使用到 npm run build 进行服务的打包 然后 打包出来的情况, 可能如下, 可以看到 chunk-vendors 是进行了包的拆分, 我们这里就是 来看一下 这里 npm run build 的时候的, 一个分包的策略 测试…

【HTML】简单制作一个唱片动画效果

目录 前言 开始 HTML部分 CSS部分 效果图 总结 前言 无需多言,本文将详细介绍一段代码,具体内容如下: 开始 首先新建文件夹,创建两个文本文档,其中HTML的文件名改为[index.html],CSS的…

Matlab|储能辅助电力系统调峰的容量需求研究

目录 1 主要内容 目标函数 约束条件 2 部分代码 3 程序结果 4 下载链接 1 主要内容 该程序参考文献《储能辅助电力系统调峰的容量需求研究》,主要是对火电、风电和储能等电力设备主体进行优化调度,在调峰能力达不到时采用弃负荷,程序以…

第十四届省赛大学B组(C/C++)子串简写

原题链接:子串简写 程序猿圈子里正在流行一种很新的简写方法: 对于一个字符串,只保留首尾字符,将首尾字符之间的所有字符用这部分的长度代替。 例如 internationalization 简写成 i18n,Kubernetes 简写成 K8s&#…

【贪玩巴斯】Mac的M芯片(M1/2...)下载homebrew方法(24年最新且已验证可行)

1. 按照目前广为流传的方法(M1会出现一些问题): 终端输入: /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)" 使用国内镜像下载。 2. 输入后按照要求步骤执行即可&#xff…