外卖配送时间预测项目

news2024/11/23 2:24:21

注意:本文引用自专业人工智能社区Venus AI

更多AI知识请参考原站 ([www.aideeplearning.cn])

项目背景

  • 外卖服务的兴起: 随着互联网技术和移动应用的发展,外卖成为一种日益普及的餐饮服务方式。顾客通过餐厅、杂货店的网站或移动应用,或通过外卖订餐公司下单。
  • 配送方式的多样性: 根据地理位置的不同,配送方式包括汽车、自行车或电动滑板车。在大城市,由于餐馆和住宅的密集,非机动车辆成为更常见的配送方式。

项目目标

  • 优化配送效率: 研究不同区域和时间段的配送数据,以提高配送效率和客户满意度。
  • 提升用户体验: 分析用户订单习惯,优化点餐和配送流程,提升整体用户体验。
  • 预测配送时间: 预测外面的配送时间。

项目应用

  • 智能配送系统: 利用数据分析和机器学习技术,开发智能配送系统,自动优化配送路线和时间。
  • 客户行为分析: 分析客户的订单偏好和习惯,为餐厅和配送公司提供有价值的洞察,帮助他们更好地调整菜单和服务。

数据集

数据集主要特征
  • Delivery_person_ID (配送员ID): 配送员的唯一标识符。
  • Delivery_person_Age (配送员年龄): 配送员的年龄。
  • Delivery_person_Ratings (配送员评分): 配送员的服务评分,反映其配送效率和服务质量。
  • Restaurant_latitude, Restaurant_longitude (餐厅纬度, 餐厅经度): 餐厅的地理位置坐标。
  • Delivery_location_latitude, Delivery_location_longitude (配送地点经纬度): 订单配送地点的地理位置坐标。
  • Order_Date (订单日期): 下单的日期。
  • Time_Orderd (订单下单时间): 客户下单的具体时间。
  • Time_Order_picked (接单时间): 配送员接单的时间。
  • Weatherconditions (天气状况): 下单当天的天气状况,可能影响配送速度和安全。
  • Road_traffic_density (道路交通密度): 配送路线上的交通密度情况。
  • Vehicle_condition (交通工具状况): 配送员使用的交通工具的状况。
  • Type_of_order (订单类型): 订单的类型,如餐饮、杂货等。
  • Type_of_vehicle (交通工具类型): 配送员用于配送的交通工具类型,如汽车、自行车或电动滑板车。
  • multiple_deliveries (多重配送): 是否为一次性配送多个订单。
  • Festival (节日): 下单当天是否为节日,节日可能影响订单量和配送速度。
  • City (城市): 订单配送所在的城市。
  • Time_taken(min) (配送用时): 从接单到完成配送所需的时间,以分钟计。

模型和依赖库

Models:

  1. RandomForestRegressor
  2. Linear Regression
  3. Lasso Regression
  4. Ensemble learning

Libraries:

  1. Pandas
  2. Numpy
  3. Seaborn
  4. Matplotlib
  5. sk-learn
  6. haversine

代码实现

import pandas as pd
import numpy as np
import haversine as hs
from datetime import datetime
import matplotlib.pyplot as plt
pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
data = pd.read_csv('train.csv')
data
IDDelivery_person_IDDelivery_person_AgeDelivery_person_RatingsRestaurant_latitudeRestaurant_longitudeDelivery_location_latitudeDelivery_location_longitudeOrder_DateTime_OrderdTime_Order_pickedWeatherconditionsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityTime_taken(min)
00x4607INDORES13DEL02374.922.74504975.89247122.76504975.91247119-03-202211:30:0011:45:00conditions SunnyHigh2Snackmotorcycle0NoUrban(min) 24
10xb379BANGRES18DEL02344.512.91304177.68323713.04304177.81323725-03-202219:45:0019:50:00conditions StormyJam2Snackscooter1NoMetropolitian(min) 33
20x5d6dBANGRES19DEL01234.412.91426477.67840012.92426477.68840019-03-202208:30:0008:45:00conditions SandstormsLow0Drinksmotorcycle1NoUrban(min) 26
30x7a6aCOIMBRES13DEL02384.711.00366976.97649411.05366977.02649405-04-202218:00:0018:10:00conditions SunnyMedium0Buffetmotorcycle1NoMetropolitian(min) 21
40x70a2CHENRES12DEL01324.612.97279380.24998213.01279380.28998226-03-202213:30:0013:45:00conditions CloudyHigh1Snackscooter1NoMetropolitian(min) 30
...............................................................
455880x7c09JAPRES04DEL01304.826.90232875.79425726.91232875.80425724-03-202211:35:0011:45:00conditions WindyHigh1Mealmotorcycle0NoMetropolitian(min) 32
455890xd641AGRRES16DEL01214.60.0000000.0000000.0700000.07000016-02-202219:55:0020:10:00conditions WindyJam0Buffetmotorcycle1NoMetropolitian(min) 36
455900x4f8dCHENRES08DEL03304.913.02239480.24243913.05239480.27243911-03-202223:50:0000:05:00conditions CloudyLow1Drinksscooter0NoMetropolitian(min) 16
455910x5eeeCOIMBRES11DEL01204.711.00175376.98624111.04175377.02624107-03-202213:35:0013:40:00conditions CloudyHigh0Snackmotorcycle1NoMetropolitian(min) 26
455920x5fb2RANCHIRES09DEL02234.923.35105885.32573123.43105885.40573102-03-202217:10:0017:15:00conditions FogMedium2Snackscooter1NoMetropolitian(min) 36

45593 rows × 20 columns

data.replace({"NaN": np.nan}, regex=True, inplace = True)
data
IDDelivery_person_IDDelivery_person_AgeDelivery_person_RatingsRestaurant_latitudeRestaurant_longitudeDelivery_location_latitudeDelivery_location_longitudeOrder_DateTime_OrderdTime_Order_pickedWeatherconditionsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityTime_taken(min)
00x4607INDORES13DEL02374.922.74504975.89247122.76504975.91247119-03-202211:30:0011:45:00conditions SunnyHigh2Snackmotorcycle0NoUrban(min) 24
10xb379BANGRES18DEL02344.512.91304177.68323713.04304177.81323725-03-202219:45:0019:50:00conditions StormyJam2Snackscooter1NoMetropolitian(min) 33
20x5d6dBANGRES19DEL01234.412.91426477.67840012.92426477.68840019-03-202208:30:0008:45:00conditions SandstormsLow0Drinksmotorcycle1NoUrban(min) 26
30x7a6aCOIMBRES13DEL02384.711.00366976.97649411.05366977.02649405-04-202218:00:0018:10:00conditions SunnyMedium0Buffetmotorcycle1NoMetropolitian(min) 21
40x70a2CHENRES12DEL01324.612.97279380.24998213.01279380.28998226-03-202213:30:0013:45:00conditions CloudyHigh1Snackscooter1NoMetropolitian(min) 30
...............................................................
455880x7c09JAPRES04DEL01304.826.90232875.79425726.91232875.80425724-03-202211:35:0011:45:00conditions WindyHigh1Mealmotorcycle0NoMetropolitian(min) 32
455890xd641AGRRES16DEL01214.60.0000000.0000000.0700000.07000016-02-202219:55:0020:10:00conditions WindyJam0Buffetmotorcycle1NoMetropolitian(min) 36
455900x4f8dCHENRES08DEL03304.913.02239480.24243913.05239480.27243911-03-202223:50:0000:05:00conditions CloudyLow1Drinksscooter0NoMetropolitian(min) 16
455910x5eeeCOIMBRES11DEL01204.711.00175376.98624111.04175377.02624107-03-202213:35:0013:40:00conditions CloudyHigh0Snackmotorcycle1NoMetropolitian(min) 26
455920x5fb2RANCHIRES09DEL02234.923.35105885.32573123.43105885.40573102-03-202217:10:0017:15:00conditions FogMedium2Snackscooter1NoMetropolitian(min) 36

45593 rows × 20 columns

data.isna().sum()
ID                                0
Delivery_person_ID                0
Delivery_person_Age            1854
Delivery_person_Ratings        1908
Restaurant_latitude               0
Restaurant_longitude              0
Delivery_location_latitude        0
Delivery_location_longitude       0
Order_Date                        0
Time_Orderd                    1731
Time_Order_picked                 0
Weatherconditions               616
Road_traffic_density            601
Vehicle_condition                 0
Type_of_order                     0
Type_of_vehicle                   0
multiple_deliveries             993
Festival                        228
City                           1200
Time_taken(min)                   0
dtype: int64
data['Distance'] = 0
data
IDDelivery_person_IDDelivery_person_AgeDelivery_person_RatingsRestaurant_latitudeRestaurant_longitudeDelivery_location_latitudeDelivery_location_longitudeOrder_DateTime_OrderdTime_Order_pickedWeatherconditionsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityTime_taken(min)Distance
00x4607INDORES13DEL02374.922.74504975.89247122.76504975.91247119-03-202211:30:0011:45:00conditions SunnyHigh2Snackmotorcycle0NoUrban(min) 240
10xb379BANGRES18DEL02344.512.91304177.68323713.04304177.81323725-03-202219:45:0019:50:00conditions StormyJam2Snackscooter1NoMetropolitian(min) 330
20x5d6dBANGRES19DEL01234.412.91426477.67840012.92426477.68840019-03-202208:30:0008:45:00conditions SandstormsLow0Drinksmotorcycle1NoUrban(min) 260
30x7a6aCOIMBRES13DEL02384.711.00366976.97649411.05366977.02649405-04-202218:00:0018:10:00conditions SunnyMedium0Buffetmotorcycle1NoMetropolitian(min) 210
40x70a2CHENRES12DEL01324.612.97279380.24998213.01279380.28998226-03-202213:30:0013:45:00conditions CloudyHigh1Snackscooter1NoMetropolitian(min) 300
..................................................................
455880x7c09JAPRES04DEL01304.826.90232875.79425726.91232875.80425724-03-202211:35:0011:45:00conditions WindyHigh1Mealmotorcycle0NoMetropolitian(min) 320
455890xd641AGRRES16DEL01214.60.0000000.0000000.0700000.07000016-02-202219:55:0020:10:00conditions WindyJam0Buffetmotorcycle1NoMetropolitian(min) 360
455900x4f8dCHENRES08DEL03304.913.02239480.24243913.05239480.27243911-03-202223:50:0000:05:00conditions CloudyLow1Drinksscooter0NoMetropolitian(min) 160
455910x5eeeCOIMBRES11DEL01204.711.00175376.98624111.04175377.02624107-03-202213:35:0013:40:00conditions CloudyHigh0Snackmotorcycle1NoMetropolitian(min) 260
455920x5fb2RANCHIRES09DEL02234.923.35105885.32573123.43105885.40573102-03-202217:10:0017:15:00conditions FogMedium2Snackscooter1NoMetropolitian(min) 360

45593 rows × 21 columns

haversine 是一个 Python 库,用于计算地球上两点之间的大圆距离。这个距离是指在地球表面两点之间的最短路径,考虑到地球的曲率。这个库在进行地理位置数据的处理和分析时特别有用,比如在确定两个地理坐标(经度和纬度)之间的直线距离时。

def calculate_distance(row):
    loc1 = (row['Restaurant_latitude'], row['Restaurant_longitude'])
    loc2 = (row['Delivery_location_latitude'], row['Delivery_location_longitude'])
    return hs.haversine(loc1, loc2)
# Apply the function to each row
data['Distance'] = data.apply(calculate_distance, axis=1)
data['Time_prep'] = 0
data
IDDelivery_person_IDDelivery_person_AgeDelivery_person_RatingsRestaurant_latitudeRestaurant_longitudeDelivery_location_latitudeDelivery_location_longitudeOrder_DateTime_OrderdTime_Order_pickedWeatherconditionsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityTime_taken(min)DistanceTime_prep
00x4607INDORES13DEL02374.922.74504975.89247122.76504975.91247119-03-202211:30:0011:45:00conditions SunnyHigh2Snackmotorcycle0NoUrban(min) 243.0251530
10xb379BANGRES18DEL02344.512.91304177.68323713.04304177.81323725-03-202219:45:0019:50:00conditions StormyJam2Snackscooter1NoMetropolitian(min) 3320.1835580
20x5d6dBANGRES19DEL01234.412.91426477.67840012.92426477.68840019-03-202208:30:0008:45:00conditions SandstormsLow0Drinksmotorcycle1NoUrban(min) 261.5527600
30x7a6aCOIMBRES13DEL02384.711.00366976.97649411.05366977.02649405-04-202218:00:0018:10:00conditions SunnyMedium0Buffetmotorcycle1NoMetropolitian(min) 217.7904120
40x70a2CHENRES12DEL01324.612.97279380.24998213.01279380.28998226-03-202213:30:0013:45:00conditions CloudyHigh1Snackscooter1NoMetropolitian(min) 306.2101470
.....................................................................
455880x7c09JAPRES04DEL01304.826.90232875.79425726.91232875.80425724-03-202211:35:0011:45:00conditions WindyHigh1Mealmotorcycle0NoMetropolitian(min) 321.4898480
455890xd641AGRRES16DEL01214.60.0000000.0000000.0700000.07000016-02-202219:55:0020:10:00conditions WindyJam0Buffetmotorcycle1NoMetropolitian(min) 3611.0077500
455900x4f8dCHENRES08DEL03304.913.02239480.24243913.05239480.27243911-03-202223:50:0000:05:00conditions CloudyLow1Drinksscooter0NoMetropolitian(min) 164.6572020
455910x5eeeCOIMBRES11DEL01204.711.00175376.98624111.04175377.02624107-03-202213:35:0013:40:00conditions CloudyHigh0Snackmotorcycle1NoMetropolitian(min) 266.2324020
455920x5fb2RANCHIRES09DEL02234.923.35105885.32573123.43105885.40573102-03-202217:10:0017:15:00conditions FogMedium2Snackscooter1NoMetropolitian(min) 3612.0744120

45593 rows × 22 columns

data.dropna(axis = 0, how = 'all', inplace = True)
data
IDDelivery_person_IDDelivery_person_AgeDelivery_person_RatingsRestaurant_latitudeRestaurant_longitudeDelivery_location_latitudeDelivery_location_longitudeOrder_DateTime_OrderdTime_Order_pickedWeatherconditionsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityTime_taken(min)DistanceTime_prep
00x4607INDORES13DEL02374.922.74504975.89247122.76504975.91247119-03-202211:30:0011:45:00conditions SunnyHigh2Snackmotorcycle0NoUrban(min) 243.0251530
10xb379BANGRES18DEL02344.512.91304177.68323713.04304177.81323725-03-202219:45:0019:50:00conditions StormyJam2Snackscooter1NoMetropolitian(min) 3320.1835580
20x5d6dBANGRES19DEL01234.412.91426477.67840012.92426477.68840019-03-202208:30:0008:45:00conditions SandstormsLow0Drinksmotorcycle1NoUrban(min) 261.5527600
30x7a6aCOIMBRES13DEL02384.711.00366976.97649411.05366977.02649405-04-202218:00:0018:10:00conditions SunnyMedium0Buffetmotorcycle1NoMetropolitian(min) 217.7904120
40x70a2CHENRES12DEL01324.612.97279380.24998213.01279380.28998226-03-202213:30:0013:45:00conditions CloudyHigh1Snackscooter1NoMetropolitian(min) 306.2101470
.....................................................................
455880x7c09JAPRES04DEL01304.826.90232875.79425726.91232875.80425724-03-202211:35:0011:45:00conditions WindyHigh1Mealmotorcycle0NoMetropolitian(min) 321.4898480
455890xd641AGRRES16DEL01214.60.0000000.0000000.0700000.07000016-02-202219:55:0020:10:00conditions WindyJam0Buffetmotorcycle1NoMetropolitian(min) 3611.0077500
455900x4f8dCHENRES08DEL03304.913.02239480.24243913.05239480.27243911-03-202223:50:0000:05:00conditions CloudyLow1Drinksscooter0NoMetropolitian(min) 164.6572020
455910x5eeeCOIMBRES11DEL01204.711.00175376.98624111.04175377.02624107-03-202213:35:0013:40:00conditions CloudyHigh0Snackmotorcycle1NoMetropolitian(min) 266.2324020
455920x5fb2RANCHIRES09DEL02234.923.35105885.32573123.43105885.40573102-03-202217:10:0017:15:00conditions FogMedium2Snackscooter1NoMetropolitian(min) 3612.0744120

45593 rows × 22 columns

data = data[data["Time_Orderd"].str.contains("NaN") == False].reset_index()
data = data[data["Time_Order_picked"].str.contains("NaN") == False].reset_index() 
data.head(50)
level_0indexIDDelivery_person_IDDelivery_person_AgeDelivery_person_RatingsRestaurant_latitudeRestaurant_longitudeDelivery_location_latitudeDelivery_location_longitudeOrder_DateTime_OrderdTime_Order_pickedWeatherconditionsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityTime_taken(min)DistanceTime_prep
0000x4607INDORES13DEL02374.922.74504975.89247122.76504975.91247119-03-202211:30:0011:45:00conditions SunnyHigh2Snackmotorcycle0NoUrban(min) 243.0251530
1110xb379BANGRES18DEL02344.512.91304177.68323713.04304177.81323725-03-202219:45:0019:50:00conditions StormyJam2Snackscooter1NoMetropolitian(min) 3320.1835580
2220x5d6dBANGRES19DEL01234.412.91426477.67840012.92426477.68840019-03-202208:30:0008:45:00conditions SandstormsLow0Drinksmotorcycle1NoUrban(min) 261.5527600
3330x7a6aCOIMBRES13DEL02384.711.00366976.97649411.05366977.02649405-04-202218:00:0018:10:00conditions SunnyMedium0Buffetmotorcycle1NoMetropolitian(min) 217.7904120
4440x70a2CHENRES12DEL01324.612.97279380.24998213.01279380.28998226-03-202213:30:0013:45:00conditions CloudyHigh1Snackscooter1NoMetropolitian(min) 306.2101470
5550x9bb4HYDRES09DEL03224.817.43166878.40832117.46166878.43832111-03-202221:20:0021:30:00conditions CloudyJam0Buffetmotorcycle1NoUrban(min) 264.6103720
6660x95b4RANCHIRES15DEL01334.723.36974685.33982023.47974685.44982004-03-202219:15:0019:30:00conditions FogJam1Mealscooter1NoMetropolitian(min) 4016.6003840
7770x9eb2MYSRES15DEL02354.612.35205876.60665012.48205876.73665014-03-202217:25:0017:30:00conditions CloudyMedium2Mealmotorcycle1NoMetropolitian(min) 3220.2052810
8880x1102HYDRES05DEL02224.817.43380978.38674417.56380978.51674420-03-202220:55:0021:05:00conditions StormyJam0Buffetmotorcycle1NoMetropolitian(min) 3419.9755480
9990xcdcdDEHRES17DEL01364.230.32796878.04610630.39796878.11610612-02-202221:55:0022:10:00conditions FogJam2Snackmotorcycle3NoMetropolitian(min) 4610.2805960
1010100xd987KOCRES16DEL01214.710.00306476.30758910.04306476.34758913-02-202214:55:0015:05:00conditions StormyHigh1Mealmotorcycle1NoMetropolitian(min) 236.2423270
1111110x2784PUNERES13DEL03234.718.56245073.91661918.65245074.00661904-03-202217:30:0017:40:00conditions SandstormsMedium1Drinksscooter1NoMetropolitian(min) 2113.7878790
1212120xc8b6LUDHRES15DEL02344.330.89958475.80934630.91958475.82934613-02-202209:20:0009:30:00conditions SandstormsLow0Buffetmotorcycle0NoMetropolitian(min) 202.9302620
1313130xdb64KNPRES14DEL02244.726.46350480.37292926.59350480.50292914-02-202219:50:0020:05:00conditions FogJam1Snackscooter1NoMetropolitian(min) 4119.3966450
1414140x3af3MUMRES15DEL03294.519.17626972.83672119.26626972.92672102-04-202220:25:0020:35:00conditions SandstormsJam2Buffetelectric_scooter1NoMetropolitian(min) 2013.7639960
1515150x3aabMYSRES01DEL0135412.31107276.65487812.35107276.69487801-03-202214:55:0015:10:00conditions WindyHigh1Mealscooter1NoMetropolitian(min) 336.2180100
1616160x689bPUNERES20DEL01334.218.59271873.77357218.70271873.88357216-03-202220:30:0020:40:00conditions SandstormsJam2Snackmotorcycle1NoMetropolitian(min) 4016.8499630
1717170x6f67HYDRES14DEL01344.917.42622878.40749517.49622878.47749520-03-202220:40:0020:50:00conditions CloudyJam0SnackmotorcycleNaNNoMetropolitian(min) 4110.7571240
1818180xc9cfKOLRES15DEL03214.722.55267288.35288522.58267288.38288515-02-202221:15:0021:30:00conditions WindyJam0Mealmotorcycle1NoUrban(min) 154.5405810
1919190x36b8PUNERES19DEL02254.118.56393473.91536718.64393573.99536716-03-202220:20:0020:25:00conditions SandstormsJam0Snackmotorcycle2NoMetropolitian(min) 3612.2560930
2020200x5795RANCHIRES06DEL02314.723.35780485.32514623.48780485.45514610-03-202222:30:0022:45:00conditions SandstormsLow2Mealelectric_scooter0NoMetropolitian(min) 2619.6187660
2121210x6c6bCOIMBRES13DEL0137511.00366976.97649411.01366976.98649411-03-202208:15:0008:30:00conditions SandstormsLow1Snackmotorcycle1NoMetropolitian(min) 201.5581340
2222220xb816CHENRES19DEL02334.312.98604780.21811413.11604780.34811427-03-202219:30:0019:45:00conditions WindyJam2Mealscooter1NoMetropolitian(min) 3920.1806630
2323230x539bMUMRES02DEL0125419.22131572.86238119.26131572.90238126-03-202212:25:0012:30:00conditions CloudyHigh1Buffetmotorcycle1NoMetropolitian(min) 346.1169800
2424240xa1b2CHENRES01DEL01294.513.00580180.25074413.11580180.36074427-03-202218:35:0018:50:00conditions SunnyMedium2Mealelectric_scooter1NoMetropolitian(min) 1517.0756180
2525250x3231JAPRES16DEL0327526.84959675.80051226.87959675.83051205-04-202220:35:0020:40:00conditions StormyJam0Snackmotorcycle0NoUrban(min) 184.4702930
2626260x8bc0SURRES15DEL03354.321.16052272.77147721.25052272.86147712-03-202223:20:0023:30:00conditions CloudyLow1Drinksscooter0NoMetropolitian(min) 3813.6820630
2727270x2288BANGRES09DEL0332412.93417977.61579713.02417977.70579716-03-202221:20:0021:35:00conditions WindyJam0Buffetmotorcycle1NoMetropolitian(min) 4713.9732020
2828280x3c5ePUNERES04DEL01234.818.51421073.83842918.62421073.94842902-04-202223:35:0023:45:00conditions WindyLow2Buffetelectric_scooter0NoUrban(min) 1216.8536420
2929290x3e60COIMBRES02DEL03314.811.02247776.99566711.05247777.02566701-04-202222:35:0022:50:00conditions SandstormsLow2Drinksmotorcycle1NoMetropolitian(min) 264.6741790
3030300xbffSURRES16DEL02364.121.16043772.77420921.21043772.82420905-03-202222:35:0022:40:00conditions StormyLow0Drinksmotorcycle1NoUrban(min) 227.6016270
3131310xd936GOARES15DEL02264.315.51315073.78346015.56315073.83346011-02-202223:25:0023:35:00conditions SandstormsLow0Buffetmotorcycle0NoUrban(min) 217.7203350
3232320xd681GOARES07DEL01384.915.56129573.74947815.60129573.78947811-02-202213:35:0013:40:00conditions CloudyHigh1Drinksscooter1NoUrban(min) 256.1756450
3333330x2876RANCHIRES02DEL01323.50.0000000.0000000.1100000.11000008-03-202221:35:0021:45:00conditions StormyJam1Snackscooter0NoUrban(min) 3517.2978900
3434340x30c8PUNERES19DEL02324.618.56393473.91536718.69393574.04536702-04-202222:35:0022:45:00conditions CloudyLow2Drinksscooter1NoMetropolitian(min) 3019.9147140
3535350xb843PUNERES02DEL01334.918.55144073.80485518.62144073.87485508-03-202218:55:0019:10:00conditions SunnyMedium1Snackmotorcycle1NoMetropolitian(min) 2210.7245330
3636360xb3a0PUNERES18DEL01204.718.59348173.78590118.63348173.82590103-04-202214:15:0014:25:00conditions WindyHigh1Snackscooter0NoUrban(min) 106.1278440
3737370x6531SURRES08DEL01204.821.17334372.79273121.18334372.80273130-03-202211:00:0011:10:00conditions SandstormsLow2Mealscooter1NoMetropolitian(min) 191.5203590
3838380x4bdaHYDRES17DEL0235517.45197678.38588317.47197678.40588301-04-202209:45:0009:55:00conditions SunnyLow2Snackscooter1NoUrban(min) 113.0734580
3939390x9d26BANGRES17DEL02264.912.97253277.60817912.99253277.62817928-03-202208:40:0008:55:00conditions StormyLow2Buffetscooter0NoMetropolitian(min) 113.1051360
4040400x9b18BANGRES17DEL01224.812.97253277.60817913.04253277.67817918-03-202223:00:0023:10:00conditions FogLow1Snackmotorcycle1NoMetropolitian(min) 2810.8674420
4141410x5d99CHENRES11DEL01354.313.06418180.23644213.13418180.30644214-03-202217:25:0017:30:00conditions CloudyMedium1Snackmotorcycle1NoMetropolitian(min) 3310.8654800
4242430xb796SURRES17DEL03374.721.14956972.77269721.23956972.86269704-04-202219:45:0019:50:00conditions SandstormsJam0Snackmotorcycle3NoMetropolitian(min) 5213.6825350
4343440x85b4MUMRES07DEL01284.619.09145872.82780819.20145872.93780808-03-202219:10:0019:25:00conditions StormyJam1Snackscooter1NoMetropolitian(min) 2216.8262650
4444450xc644KOLRES16DEL02374.922.53912988.36550722.55912988.38550713-02-202210:55:0011:00:00conditions FogLow1Snackscooter1NoUrban(min) 163.0272410
4545460x6999MUMRES02DEL03234.919.22131572.86238119.28131572.92238124-03-202221:40:0021:45:00conditions SunnyJam2Drinkselectric_scooter0NoMetropolitian(min) 119.1752070
4646470x63b6BANGRES05DEL03274.912.97032477.64574813.03032477.70574819-03-202219:00:0019:15:00conditions WindyMedium1Drinksscooter1NoMetropolitian(min) 259.3150820
4747480xa30bCHENRES11DEL01374.813.06418180.23644213.10418180.27644209-03-202216:45:0016:55:00conditions CloudyMedium0Drinksmotorcycle1NoUrban(min) 266.2090300
4848490x3556SURRES09DEL0133521.17597572.79550321.18597572.80550319-03-202211:30:0011:40:00conditions SunnyHigh2Snackscooter1NoMetropolitian(min) 181.5203470
4949500x5554RANCHIRES15DEL01314.923.36974685.33982023.40974685.37982003-04-202215:10:0015:15:00conditions FogMedium1Snackmotorcycle1NoMetropolitian(min) 166.0372340
# 计算配送时间
for i in range(len(data)):
    t1 = datetime.strptime(data['Time_Orderd'][i], "%H:%M:%S")
    t2  =datetime.strptime(data['Time_Order_picked'][i], "%H:%M:%S")
 
    diff = t2-t1
    sec = diff.total_seconds()
    minute = sec/60
    data['Time_prep'][i] = minute

data
level_0indexIDDelivery_person_IDDelivery_person_AgeDelivery_person_RatingsRestaurant_latitudeRestaurant_longitudeDelivery_location_latitudeDelivery_location_longitudeOrder_DateTime_OrderdTime_Order_pickedWeatherconditionsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityTime_taken(min)DistanceTime_prep
0000x4607INDORES13DEL02374.922.74504975.89247122.76504975.91247119-03-202211:30:0011:45:00conditions SunnyHigh2Snackmotorcycle0NoUrban(min) 243.02515315
1110xb379BANGRES18DEL02344.512.91304177.68323713.04304177.81323725-03-202219:45:0019:50:00conditions StormyJam2Snackscooter1NoMetropolitian(min) 3320.1835585
2220x5d6dBANGRES19DEL01234.412.91426477.67840012.92426477.68840019-03-202208:30:0008:45:00conditions SandstormsLow0Drinksmotorcycle1NoUrban(min) 261.55276015
3330x7a6aCOIMBRES13DEL02384.711.00366976.97649411.05366977.02649405-04-202218:00:0018:10:00conditions SunnyMedium0Buffetmotorcycle1NoMetropolitian(min) 217.79041210
4440x70a2CHENRES12DEL01324.612.97279380.24998213.01279380.28998226-03-202213:30:0013:45:00conditions CloudyHigh1Snackscooter1NoMetropolitian(min) 306.21014715
...........................................................................
4385743857455880x7c09JAPRES04DEL01304.826.90232875.79425726.91232875.80425724-03-202211:35:0011:45:00conditions WindyHigh1Mealmotorcycle0NoMetropolitian(min) 321.48984810
4385843858455890xd641AGRRES16DEL01214.60.0000000.0000000.0700000.07000016-02-202219:55:0020:10:00conditions WindyJam0Buffetmotorcycle1NoMetropolitian(min) 3611.00775015
4385943859455900x4f8dCHENRES08DEL03304.913.02239480.24243913.05239480.27243911-03-202223:50:0000:05:00conditions CloudyLow1Drinksscooter0NoMetropolitian(min) 164.657202-1425
4386043860455910x5eeeCOIMBRES11DEL01204.711.00175376.98624111.04175377.02624107-03-202213:35:0013:40:00conditions CloudyHigh0Snackmotorcycle1NoMetropolitian(min) 266.2324025
4386143861455920x5fb2RANCHIRES09DEL02234.923.35105885.32573123.43105885.40573102-03-202217:10:0017:15:00conditions FogMedium2Snackscooter1NoMetropolitian(min) 3612.0744125

43862 rows × 24 columns

data = data.drop(['Restaurant_latitude', 'Restaurant_longitude', 'Delivery_location_latitude', 'Delivery_location_longitude'], axis=1)
data = data.drop(['Time_Orderd', 'Time_Order_picked'], axis=1)
data
level_0indexIDDelivery_person_IDDelivery_person_AgeDelivery_person_RatingsOrder_DateWeatherconditionsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityTime_taken(min)DistanceTime_prep
0000x4607INDORES13DEL02374.919-03-2022conditions SunnyHigh2Snackmotorcycle0NoUrban(min) 243.02515315
1110xb379BANGRES18DEL02344.525-03-2022conditions StormyJam2Snackscooter1NoMetropolitian(min) 3320.1835585
2220x5d6dBANGRES19DEL01234.419-03-2022conditions SandstormsLow0Drinksmotorcycle1NoUrban(min) 261.55276015
3330x7a6aCOIMBRES13DEL02384.705-04-2022conditions SunnyMedium0Buffetmotorcycle1NoMetropolitian(min) 217.79041210
4440x70a2CHENRES12DEL01324.626-03-2022conditions CloudyHigh1Snackscooter1NoMetropolitian(min) 306.21014715
.........................................................
4385743857455880x7c09JAPRES04DEL01304.824-03-2022conditions WindyHigh1Mealmotorcycle0NoMetropolitian(min) 321.48984810
4385843858455890xd641AGRRES16DEL01214.616-02-2022conditions WindyJam0Buffetmotorcycle1NoMetropolitian(min) 3611.00775015
4385943859455900x4f8dCHENRES08DEL03304.911-03-2022conditions CloudyLow1Drinksscooter0NoMetropolitian(min) 164.657202-1425
4386043860455910x5eeeCOIMBRES11DEL01204.707-03-2022conditions CloudyHigh0Snackmotorcycle1NoMetropolitian(min) 266.2324025
4386143861455920x5fb2RANCHIRES09DEL02234.902-03-2022conditions FogMedium2Snackscooter1NoMetropolitian(min) 3612.0744125

43862 rows × 18 columns

# 将一个名为data的数据框(DataFrame)中的Weatherconditions列的值进行处理,然后将处理后的结果存储到一个名为Weather的新列中,最后删除原始的Weatherconditions列。
data['Weather'] = 0
for i in range(len(data)):
    str1 = data['Weatherconditions'][i]
    cond = str1.split(' ')
    data['Weather'][i] = cond[1]

data = data.drop(['Weatherconditions'], axis=1)
data = data.drop(['Order_Date'], axis=1)
data
level_0indexIDDelivery_person_IDDelivery_person_AgeDelivery_person_RatingsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityTime_taken(min)DistanceTime_prepWeather
0000x4607INDORES13DEL02374.9High2Snackmotorcycle0NoUrban(min) 243.02515315Sunny
1110xb379BANGRES18DEL02344.5Jam2Snackscooter1NoMetropolitian(min) 3320.1835585Stormy
2220x5d6dBANGRES19DEL01234.4Low0Drinksmotorcycle1NoUrban(min) 261.55276015Sandstorms
3330x7a6aCOIMBRES13DEL02384.7Medium0Buffetmotorcycle1NoMetropolitian(min) 217.79041210Sunny
4440x70a2CHENRES12DEL01324.6High1Snackscooter1NoMetropolitian(min) 306.21014715Cloudy
......................................................
4385743857455880x7c09JAPRES04DEL01304.8High1Mealmotorcycle0NoMetropolitian(min) 321.48984810Windy
4385843858455890xd641AGRRES16DEL01214.6Jam0Buffetmotorcycle1NoMetropolitian(min) 3611.00775015Windy
4385943859455900x4f8dCHENRES08DEL03304.9Low1Drinksscooter0NoMetropolitian(min) 164.657202-1425Cloudy
4386043860455910x5eeeCOIMBRES11DEL01204.7High0Snackmotorcycle1NoMetropolitian(min) 266.2324025Cloudy
4386143861455920x5fb2RANCHIRES09DEL02234.9Medium2Snackscooter1NoMetropolitian(min) 3612.0744125Fog

43862 rows × 17 columns

data['Time_taken'] = 0
for i in range(len(data)):
    list2 = data['Time_taken(min)'][i]
    str2 = list2.split(' ')
    data['Time_taken'][i] = int(str2[1])
data
level_0indexIDDelivery_person_IDDelivery_person_AgeDelivery_person_RatingsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityTime_taken(min)DistanceTime_prepWeatherTime_taken
0000x4607INDORES13DEL02374.9High2Snackmotorcycle0NoUrban(min) 243.02515315Sunny24
1110xb379BANGRES18DEL02344.5Jam2Snackscooter1NoMetropolitian(min) 3320.1835585Stormy33
2220x5d6dBANGRES19DEL01234.4Low0Drinksmotorcycle1NoUrban(min) 261.55276015Sandstorms26
3330x7a6aCOIMBRES13DEL02384.7Medium0Buffetmotorcycle1NoMetropolitian(min) 217.79041210Sunny21
4440x70a2CHENRES12DEL01324.6High1Snackscooter1NoMetropolitian(min) 306.21014715Cloudy30
.........................................................
4385743857455880x7c09JAPRES04DEL01304.8High1Mealmotorcycle0NoMetropolitian(min) 321.48984810Windy32
4385843858455890xd641AGRRES16DEL01214.6Jam0Buffetmotorcycle1NoMetropolitian(min) 3611.00775015Windy36
4385943859455900x4f8dCHENRES08DEL03304.9Low1Drinksscooter0NoMetropolitian(min) 164.657202-1425Cloudy16
4386043860455910x5eeeCOIMBRES11DEL01204.7High0Snackmotorcycle1NoMetropolitian(min) 266.2324025Cloudy26
4386143861455920x5fb2RANCHIRES09DEL02234.9Medium2Snackscooter1NoMetropolitian(min) 3612.0744125Fog36

43862 rows × 18 columns

data = data.drop(['Time_taken(min)'], axis=1)
data
level_0indexIDDelivery_person_IDDelivery_person_AgeDelivery_person_RatingsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityDistanceTime_prepWeatherTime_taken
0000x4607INDORES13DEL02374.9High2Snackmotorcycle0NoUrban3.02515315Sunny24
1110xb379BANGRES18DEL02344.5Jam2Snackscooter1NoMetropolitian20.1835585Stormy33
2220x5d6dBANGRES19DEL01234.4Low0Drinksmotorcycle1NoUrban1.55276015Sandstorms26
3330x7a6aCOIMBRES13DEL02384.7Medium0Buffetmotorcycle1NoMetropolitian7.79041210Sunny21
4440x70a2CHENRES12DEL01324.6High1Snackscooter1NoMetropolitian6.21014715Cloudy30
......................................................
4385743857455880x7c09JAPRES04DEL01304.8High1Mealmotorcycle0NoMetropolitian1.48984810Windy32
4385843858455890xd641AGRRES16DEL01214.6Jam0Buffetmotorcycle1NoMetropolitian11.00775015Windy36
4385943859455900x4f8dCHENRES08DEL03304.9Low1Drinksscooter0NoMetropolitian4.657202-1425Cloudy16
4386043860455910x5eeeCOIMBRES11DEL01204.7High0Snackmotorcycle1NoMetropolitian6.2324025Cloudy26
4386143861455920x5fb2RANCHIRES09DEL02234.9Medium2Snackscooter1NoMetropolitian12.0744125Fog36

43862 rows × 17 columns

order_type = data['Type_of_order'].unique()
for i in range(len(order_type)):
    data['Type_of_order'] = data['Type_of_order'].replace(order_type[i], i)
data
level_0indexIDDelivery_person_IDDelivery_person_AgeDelivery_person_RatingsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityDistanceTime_prepWeatherTime_taken
0000x4607INDORES13DEL02374.9High20motorcycle0NoUrban3.02515315Sunny24
1110xb379BANGRES18DEL02344.5Jam20scooter1NoMetropolitian20.1835585Stormy33
2220x5d6dBANGRES19DEL01234.4Low01motorcycle1NoUrban1.55276015Sandstorms26
3330x7a6aCOIMBRES13DEL02384.7Medium02motorcycle1NoMetropolitian7.79041210Sunny21
4440x70a2CHENRES12DEL01324.6High10scooter1NoMetropolitian6.21014715Cloudy30
......................................................
4385743857455880x7c09JAPRES04DEL01304.8High13motorcycle0NoMetropolitian1.48984810Windy32
4385843858455890xd641AGRRES16DEL01214.6Jam02motorcycle1NoMetropolitian11.00775015Windy36
4385943859455900x4f8dCHENRES08DEL03304.9Low11scooter0NoMetropolitian4.657202-1425Cloudy16
4386043860455910x5eeeCOIMBRES11DEL01204.7High00motorcycle1NoMetropolitian6.2324025Cloudy26
4386143861455920x5fb2RANCHIRES09DEL02234.9Medium20scooter1NoMetropolitian12.0744125Fog36

43862 rows × 17 columns

data['Type_of_vehicle'] = data['Type_of_vehicle'].replace('motorcycle ', 0)
data['Type_of_vehicle'] = data['Type_of_vehicle'].replace('scooter ', 1)
data['Type_of_vehicle'] = data['Type_of_vehicle'].replace('electric_scooter ', 2)
data
level_0indexIDDelivery_person_IDDelivery_person_AgeDelivery_person_RatingsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityDistanceTime_prepWeatherTime_taken
0000x4607INDORES13DEL02374.9High2000NoUrban3.02515315Sunny24
1110xb379BANGRES18DEL02344.5Jam2011NoMetropolitian20.1835585Stormy33
2220x5d6dBANGRES19DEL01234.4Low0101NoUrban1.55276015Sandstorms26
3330x7a6aCOIMBRES13DEL02384.7Medium0201NoMetropolitian7.79041210Sunny21
4440x70a2CHENRES12DEL01324.6High1011NoMetropolitian6.21014715Cloudy30
......................................................
4385743857455880x7c09JAPRES04DEL01304.8High1300NoMetropolitian1.48984810Windy32
4385843858455890xd641AGRRES16DEL01214.6Jam0201NoMetropolitian11.00775015Windy36
4385943859455900x4f8dCHENRES08DEL03304.9Low1110NoMetropolitian4.657202-1425Cloudy16
4386043860455910x5eeeCOIMBRES11DEL01204.7High0001NoMetropolitian6.2324025Cloudy26
4386143861455920x5fb2RANCHIRES09DEL02234.9Medium2011NoMetropolitian12.0744125Fog36

43862 rows × 17 columns

road_traffic = data['Road_traffic_density'].unique()
for i in range(len(road_traffic)):
    data['Road_traffic_density'] = data['Road_traffic_density'].replace(road_traffic[i], i)
data
level_0indexIDDelivery_person_IDDelivery_person_AgeDelivery_person_RatingsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityDistanceTime_prepWeatherTime_taken
0000x4607INDORES13DEL02374.902000NoUrban3.02515315Sunny24
1110xb379BANGRES18DEL02344.512011NoMetropolitian20.1835585Stormy33
2220x5d6dBANGRES19DEL01234.420101NoUrban1.55276015Sandstorms26
3330x7a6aCOIMBRES13DEL02384.730201NoMetropolitian7.79041210Sunny21
4440x70a2CHENRES12DEL01324.601011NoMetropolitian6.21014715Cloudy30
......................................................
4385743857455880x7c09JAPRES04DEL01304.801300NoMetropolitian1.48984810Windy32
4385843858455890xd641AGRRES16DEL01214.610201NoMetropolitian11.00775015Windy36
4385943859455900x4f8dCHENRES08DEL03304.921110NoMetropolitian4.657202-1425Cloudy16
4386043860455910x5eeeCOIMBRES11DEL01204.700001NoMetropolitian6.2324025Cloudy26
4386143861455920x5fb2RANCHIRES09DEL02234.932011NoMetropolitian12.0744125Fog36

43862 rows × 17 columns

festival = data['Festival'].unique()
for i in range(len(festival)):
    data['Festival'] = data['Festival'].replace(festival[i], i)
data
level_0indexIDDelivery_person_IDDelivery_person_AgeDelivery_person_RatingsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityDistanceTime_prepWeatherTime_taken
0000x4607INDORES13DEL02374.9020000.0Urban3.02515315Sunny24
1110xb379BANGRES18DEL02344.5120110.0Metropolitian20.1835585Stormy33
2220x5d6dBANGRES19DEL01234.4201010.0Urban1.55276015Sandstorms26
3330x7a6aCOIMBRES13DEL02384.7302010.0Metropolitian7.79041210Sunny21
4440x70a2CHENRES12DEL01324.6010110.0Metropolitian6.21014715Cloudy30
......................................................
4385743857455880x7c09JAPRES04DEL01304.8013000.0Metropolitian1.48984810Windy32
4385843858455890xd641AGRRES16DEL01214.6102010.0Metropolitian11.00775015Windy36
4385943859455900x4f8dCHENRES08DEL03304.9211100.0Metropolitian4.657202-1425Cloudy16
4386043860455910x5eeeCOIMBRES11DEL01204.7000010.0Metropolitian6.2324025Cloudy26
4386143861455920x5fb2RANCHIRES09DEL02234.9320110.0Metropolitian12.0744125Fog36

43862 rows × 17 columns

city = data['City'].unique()
for i in range(len(city)):
    data['City'] = data['City'].replace(city[i], i)
data
level_0indexIDDelivery_person_IDDelivery_person_AgeDelivery_person_RatingsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityDistanceTime_prepWeatherTime_taken
0000x4607INDORES13DEL02374.9020000.00.03.02515315Sunny24
1110xb379BANGRES18DEL02344.5120110.01.020.1835585Stormy33
2220x5d6dBANGRES19DEL01234.4201010.00.01.55276015Sandstorms26
3330x7a6aCOIMBRES13DEL02384.7302010.01.07.79041210Sunny21
4440x70a2CHENRES12DEL01324.6010110.01.06.21014715Cloudy30
......................................................
4385743857455880x7c09JAPRES04DEL01304.8013000.01.01.48984810Windy32
4385843858455890xd641AGRRES16DEL01214.6102010.01.011.00775015Windy36
4385943859455900x4f8dCHENRES08DEL03304.9211100.01.04.657202-1425Cloudy16
4386043860455910x5eeeCOIMBRES11DEL01204.7000010.01.06.2324025Cloudy26
4386143861455920x5fb2RANCHIRES09DEL02234.9320110.01.012.0744125Fog36

43862 rows × 17 columns

weather = data['Weather'].unique()
for i in range(len(weather)):
    data['Weather'] = data['Weather'].replace(weather[i], i)
data
level_0indexIDDelivery_person_IDDelivery_person_AgeDelivery_person_RatingsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityDistanceTime_prepWeatherTime_taken
0000x4607INDORES13DEL02374.9020000.00.03.02515315024
1110xb379BANGRES18DEL02344.5120110.01.020.1835585133
2220x5d6dBANGRES19DEL01234.4201010.00.01.55276015226
3330x7a6aCOIMBRES13DEL02384.7302010.01.07.79041210021
4440x70a2CHENRES12DEL01324.6010110.01.06.21014715330
......................................................
4385743857455880x7c09JAPRES04DEL01304.8013000.01.01.48984810532
4385843858455890xd641AGRRES16DEL01214.6102010.01.011.00775015536
4385943859455900x4f8dCHENRES08DEL03304.9211100.01.04.657202-1425316
4386043860455910x5eeeCOIMBRES11DEL01204.7000010.01.06.2324025326
4386143861455920x5fb2RANCHIRES09DEL02234.9320110.01.012.0744125436

43862 rows × 17 columns

data = data[data['Time_prep']>0]
data = data[data['Delivery_person_Age']!="NaN "]
data = data[data['Delivery_person_Ratings']!="NaN "]
data = data[data['Road_traffic_density']!="NaN "]
data = data[data['Vehicle_condition']!="NaN"]
data = data[data['Type_of_order']!="NaN"]
data = data[data['Type_of_vehicle']!="NaN"]
data = data[data['multiple_deliveries']!="NaN"]
data = data[data['Festival']!="NaN"]
data = data[data['City']!="NaN"]
data = data[data['Distance']!="NaN"]
data = data[data['Time_prep']!="NaN"]
data = data[data['Weather']!="NaN"]
data
level_0indexIDDelivery_person_IDDelivery_person_AgeDelivery_person_RatingsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityDistanceTime_prepWeatherTime_taken
0000x4607INDORES13DEL02374.9020000.00.03.02515315024
1110xb379BANGRES18DEL02344.5120110.01.020.1835585133
2220x5d6dBANGRES19DEL01234.4201010.00.01.55276015226
3330x7a6aCOIMBRES13DEL02384.7302010.01.07.79041210021
4440x70a2CHENRES12DEL01324.6010110.01.06.21014715330
......................................................
4385643856455870x1178RANCHIRES16DEL01354.2121010.01.016.60029510533
4385743857455880x7c09JAPRES04DEL01304.8013000.01.01.48984810532
4385843858455890xd641AGRRES16DEL01214.6102010.01.011.00775015536
4386043860455910x5eeeCOIMBRES11DEL01204.7000010.01.06.2324025326
4386143861455920x5fb2RANCHIRES09DEL02234.9320110.01.012.0744125436

43031 rows × 17 columns

data['Delivery_person_Age'] = pd.to_numeric(data['Delivery_person_Age'])
data['Delivery_person_Ratings'] = pd.to_numeric(data['Delivery_person_Ratings'])
data['multiple_deliveries'] = pd.to_numeric(data['multiple_deliveries'])
data
level_0indexIDDelivery_person_IDDelivery_person_AgeDelivery_person_RatingsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityDistanceTime_prepWeatherTime_taken
0000x4607INDORES13DEL0237.04.902000.00.00.03.02515315024
1110xb379BANGRES18DEL0234.04.512011.00.01.020.1835585133
2220x5d6dBANGRES19DEL0123.04.420101.00.00.01.55276015226
3330x7a6aCOIMBRES13DEL0238.04.730201.00.01.07.79041210021
4440x70a2CHENRES12DEL0132.04.601011.00.01.06.21014715330
......................................................
4385643856455870x1178RANCHIRES16DEL0135.04.212101.00.01.016.60029510533
4385743857455880x7c09JAPRES04DEL0130.04.801300.00.01.01.48984810532
4385843858455890xd641AGRRES16DEL0121.04.610201.00.01.011.00775015536
4386043860455910x5eeeCOIMBRES11DEL0120.04.700001.00.01.06.2324025326
4386143861455920x5fb2RANCHIRES09DEL0223.04.932011.00.01.012.0744125436

43031 rows × 17 columns

data = data.drop(['Delivery_person_ID', 'ID', 'index', 'level_0'], axis=1)
data
Delivery_person_AgeDelivery_person_RatingsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityDistanceTime_prepWeatherTime_taken
037.04.902000.00.00.03.02515315024
134.04.512011.00.01.020.1835585133
223.04.420101.00.00.01.55276015226
338.04.730201.00.01.07.79041210021
432.04.601011.00.01.06.21014715330
..........................................
4385635.04.212101.00.01.016.60029510533
4385730.04.801300.00.01.01.48984810532
4385821.04.610201.00.01.011.00775015536
4386020.04.700001.00.01.06.2324025326
4386123.04.932011.00.01.012.0744125436

43031 rows × 13 columns

data['Distance'].describe()
data = data[data['Distance']<100]
data = data.reset_index()
data
indexDelivery_person_AgeDelivery_person_RatingsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityDistanceTime_prepWeatherTime_taken
0037.04.902000.00.00.03.02515315024
1134.04.512011.00.01.020.1835585133
2223.04.420101.00.00.01.55276015226
3338.04.730201.00.01.07.79041210021
4432.04.601011.00.01.06.21014715330
.............................................
428724385635.04.212101.00.01.016.60029510533
428734385730.04.801300.00.01.01.48984810532
428744385821.04.610201.00.01.011.00775015536
428754386020.04.700001.00.01.06.2324025326
428764386123.04.932011.00.01.012.0744125436

42877 rows × 14 columns

data.isna().sum()
index                        0
Delivery_person_Age        211
Delivery_person_Ratings    257
Road_traffic_density         0
Vehicle_condition            0
Type_of_order                0
Type_of_vehicle              0
multiple_deliveries        927
Festival                     0
City                         0
Distance                     0
Time_prep                    0
Weather                      0
Time_taken                   0
dtype: int64
data['multiple_deliveries'].head(30)
0     0.0
1     1.0
2     1.0
3     1.0
4     1.0
5     1.0
6     1.0
7     1.0
8     1.0
9     3.0
10    1.0
11    1.0
12    0.0
13    1.0
14    1.0
15    1.0
16    1.0
17    NaN
18    1.0
19    2.0
20    0.0
21    1.0
22    1.0
23    1.0
24    1.0
25    0.0
26    0.0
27    1.0
28    0.0
29    1.0
Name: multiple_deliveries, dtype: float64
data['Delivery_person_Age'] = data['Delivery_person_Age'].fillna(data['Delivery_person_Age'].mean()) 
data['Delivery_person_Ratings'] = data['Delivery_person_Ratings'].fillna(data['Delivery_person_Ratings'].mean()) 
data['multiple_deliveries'].unique()
data['multiple_deliveries'].median()
data['multiple_deliveries'] = data['multiple_deliveries'].fillna(data['multiple_deliveries'].median())
data.isna().sum()
index                      0
Delivery_person_Age        0
Delivery_person_Ratings    0
Road_traffic_density       0
Vehicle_condition          0
Type_of_order              0
Type_of_vehicle            0
multiple_deliveries        0
Festival                   0
City                       0
Distance                   0
Time_prep                  0
Weather                    0
Time_taken                 0
dtype: int64
import seaborn as sns
plt.figure(figsize=(15,7))
ax = sns.heatmap(data.corr(), annot=True)

columns=data[['Delivery_person_Age','Delivery_person_Ratings','Road_traffic_density','Vehicle_condition','Type_of_order','Time_taken']]
sns.pairplot(columns)
plt.show()

from sklearn.model_selection import train_test_split
x = data.drop(['Time_taken', 'index'], axis=1)
x
Delivery_person_AgeDelivery_person_RatingsRoad_traffic_densityVehicle_conditionType_of_orderType_of_vehiclemultiple_deliveriesFestivalCityDistanceTime_prepWeather
037.04.902000.00.00.03.025153150
134.04.512011.00.01.020.18355851
223.04.420101.00.00.01.552760152
338.04.730201.00.01.07.790412100
432.04.601011.00.01.06.210147153
.......................................
4287235.04.212101.00.01.016.600295105
4287330.04.801300.00.01.01.489848105
4287421.04.610201.00.01.011.007750155
4287520.04.700001.00.01.06.23240253
4287623.04.932011.00.01.012.07441254

42877 rows × 12 columns

y = data[['Time_taken']]
y
Time_taken
024
133
226
321
430
......
4287233
4287332
4287436
4287526
4287636

42877 rows × 1 columns

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=42)
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import GridSearchCV
from sklearn import metrics
import warnings
warnings.filterwarnings('ignore')

随机森林回归

forest = RandomForestRegressor(n_estimators= 200, min_samples_split= 4, min_samples_leaf= 1)
forest.fit(x_train, y_train)

RandomForestRegressor

RandomForestRegressor(min_samples_split=4, n_estimators=200)
forest.score(x_test, y_test)
0.8366806837953505

线性回归

from sklearn.linear_model import LinearRegression
reg = LinearRegression()
reg.fit(x_train, y_train)
reg.score(x_test, y_test)
0.46966387660478515
from sklearn import linear_model
reg2=linear_model.LassoLars(alpha=.1, normalize=False)
reg2.fit(x_train,y_train)

LassoLars

LassoLars(alpha=0.1, normalize=False)
reg2.score(x_train, y_train)
0.4674006811969696

完整代码详见源网站:外卖配送时间预测项目-VenusAI (aideeplearning.cn)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1566431.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

全球范围内2nm晶圆厂建设加速

随着人工智能浪潮席卷而来&#xff0c;先进制程芯片的重要性日益凸显。当前&#xff0c;3nm工艺节点是行业内最先进的节点。与此同时&#xff0c;台积电、三星、英特尔、Rapidus等厂商正积极布局建设2nm晶圆厂。台积电与三星此前计划于2025年量产2nm芯片&#xff0c;而Rapidus则…

嵌入式中常见的面试题分享

1.关键字static的作用是什么&#xff1f;为什么static变量只初始化一次&#xff1f; 1&#xff09;修饰局部变量&#xff1a;使得变量变成静态变量&#xff0c;存储在静态区&#xff0c;存储在静态区的数据周期和程序相同&#xff0c; 在main函数开始前初始化&#xff0c;在退…

java:6 数组(3)

文章目录 14. 二维数组14.1 定义14.2 二维数组的使用14.3 练习 【老韩视频p175-】 14. 二维数组 14.1 定义 多维数组我们只介绍二维数组&#xff1a; 二维数组的应用场景&#xff1a;比如我们开发一个五子棋游戏&#xff0c;棋盘就是需要二维数组来表示。请用二维数组输出如下…

【漏洞复现】某科技X2Modbus网关多个漏洞

漏洞描述 最近某科技X2Modbus网关出了一个GetUser的信息泄露的漏洞,但是经过审计发现该系统80%以上的接口均是未授权的,没有添加相应的鉴权机制,以下列举多个未授权接口以及获取相关敏感信息的接口。 免责声明 技术文章仅供参考,任何个人和组织使用网络应当遵守宪法法律…

[C++初阶]初识C++(一)—————命名空间和缺省函数

声明: 本篇文献内容选自百度文库、比特就业课 代码内容部分选自比特就业课 一、命名空间 1.什么是命名空间 在编程语言中&#xff0c;命名空间是一种特殊的作用域&#xff0c;它包含了处于该作用域中的所有标示符&#xff0c;而且其本身也是由标示符表示的。命名空间的使用目…

C++ //练习 11.12 编写程序,读入string和int的序列,将每个string和int存入一个pair中,pair保存在一个vector中。

C Primer&#xff08;第5版&#xff09; 练习 11.12 练习 11.12 编写程序&#xff0c;读入string和int的序列&#xff0c;将每个string和int存入一个pair中&#xff0c;pair保存在一个vector中。 环境&#xff1a;Linux Ubuntu&#xff08;云服务器&#xff09; 工具&#x…

【网站项目】课堂教学效果实时评价系统

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

C++的并发世界(五)——线程状态切换

0.线程状态 初始化&#xff1a;该线程正在被创建&#xff1b; 就绪&#xff1a;该线程在列表中就绪&#xff0c;等待CPU调度&#xff1b; 运行&#xff1a;该线程正在运行&#xff1b; 阻塞&#xff1a;该线程被阻塞挂机&#xff0c;Blocked状态包括&#xff1a;pend&#xff…

【复现】飞鱼星上网行为管理系统RCE漏洞_67

目录 一.概述 二 .漏洞影响 三.漏洞复现 1. 漏洞一&#xff1a; 四.修复建议&#xff1a; 五. 搜索语法&#xff1a; 六.免责声明 一.概述 飞鱼星企业级智能上网行为管理系统是成都飞鱼星科技开发有限公司开发的一款上网行为管理路由器&#xff0c;专为中小企业、政府机…

C++重载和模板

重载与模板 函数模板可以被另一个模板或一个普通非模板函数重载。 与往常一样&#xff0c;名字相同的函数必须具有不同数量或类型的参数。 如果涉及函数模板&#xff0c;则函数匹配规则会在以下几方面受到影响&#xff1a; 对于一个调用&#xff0c;其候选函数包括所有模板…

数据恢复工具可以恢复所有丢失的文件吗

随着数字时代的快速发展&#xff0c;数据已经成为我们生活与工作中不可或缺的一部分。然而&#xff0c;数据丢失的风险也随之增大。无论是由于误删除、误格式化、病毒感染还是其他意外情况&#xff0c;数据丢失都可能带来不小的损失。在这种情况下&#xff0c;数据恢复工具应运…

揭开AI编程语言Mojo比Pyhon快6.8万倍的5个秘密!

最近&#xff08;2024年3月29日&#xff09;&#xff0c;号称比Python快6.8万倍的Mojo编程语言开源啦&#xff01;6.8万倍&#xff1f;你敢相信这个数字是真的吗&#xff1f;不过&#xff0c;就连Mojo官网都把这个结果贴了出来&#xff08;见下图&#xff09;&#xff0c;这就很…

Java快速入门系列-1(Java概述)

第一章&#xff1a;Java概述 1.1 Java的发展历程1.2 Java的特点与优势1.2.1 特点1.2.2 优势 1.3 Java生态系统介绍1.4 Java在当前技术领域的应用案例 1.1 Java的发展历程 Java语言由Sun Microsystems公司于1995年推出&#xff0c;由James Gosling领导的Green Team小组研发而成…

孙崧-回归祖国的数学天才谈国外学习研究感受

孙崧&#xff0c;这位37岁的美国加州大学伯克利分校数学系教授&#xff0c;今年正式回归祖国&#xff0c;担任浙江大学数学高等研究院杜建英讲席教授、博士生导师。在此&#xff0c;知识人网小编就经历过国外就读、从事博士后研究及任教的这位数学天才是怎么说的&#xff0c;或…

文心一言指令词宝典之旅行篇

作者&#xff1a;哈哥撩编程&#xff08;视频号、抖音、公众号同名&#xff09; 新星计划全栈领域优秀创作者博客专家全国博客之星第四名超级个体COC上海社区主理人特约讲师谷歌亚马逊演讲嘉宾科技博主极星会首批签约作者 &#x1f3c6; 推荐专栏&#xff1a; &#x1f3c5;…

02-JDK新特性-Stream流

Stream流 什么是Stream流 Stream流是Java 8中的一个新特性&#xff0c;它提供了一种处理集合和数组的方式。Stream流可以让我们以一种更加简洁、高效、可读性更强的方式来处理数据。 Stream流可以用于过滤、映射、排序、聚合等操作&#xff0c;它可以让我们避免使用循环和条件…

商务电子邮件: 在WorkPlace中高效且安全

高效和安全的沟通是任何组织成功的核心。在我们关于电子邮件类型的系列文章的第二期中&#xff0c;我们将重点关注商业电子邮件在促进无缝交互中的关键作用。当你身处重要的工作场环境时&#xff0c;本系列的每篇文章都提供了电子邮件的不同维度的视角。 “2024年&#xff0c;全…

互联网轻量级框架整合之Spring框架II

持久层框架 Hibernate 假设有个数据表&#xff0c;它有3个字段分别是id、rolename、note, 首先用IDEA构建一个maven项目Archetype选择org.apache.maven.archetypes:maven-archetype-quickstart即可&#xff0c;配置如下pom <project xmlns"http://maven.apache.org/…

解决Centos7无法连接网络和访问网页连接不上问题

一、网络无法连接问题 网络无法连接的问题我查到了一个很良心的操作&#xff0c;不用重装&#xff0c;因为可能是你虚拟机设置上的问题。我先写我的解决方案&#xff0c;再附上其他几种解决方案。 问题一&#xff1a; 虚拟机的问题****加粗样式 解决&#xff1a; &#xff08;…

自动驾驶传感器:带你搞懂卫星导航GPS-RTK原理

自动驾驶传感器&#xff1a;带你搞懂卫星导航GPS-RTK原理 附赠自动驾驶学习资料和量产经验&#xff1a;链接 0. 前言 自动驾驶的感知层里面&#xff0c;前面Lidar&#xff0c;Radar&#xff0c;Camera的介绍之前已写完。还差GNSS-RTK和IMU模块就补齐了主要的自动驾驶感知层的…