kruskal做法(加边)
#include <bits/stdc++.h>
using namespace std;
int x[10005],y[10005],z[10005];//存储i点的x与y坐标
int bcj[10005];//并查集
struct Edge{//边
int v1,v2;
double w;
}edge[2000005];
int cmp(Edge a, Edge b){return a.w < b.w;}
int find(int x){//并查集查找
if(bcj[x]!=x)bcj[x]=find(bcj[x]);//带路径压缩
return bcj[x];
}
void merge(int v1,int v2){//并查集合并
v1=find(v1);v2=find(v2);
bcj[v2]=v1;
}
int main(){
//
int n;cin>>n;
for(int i=1;i<=n;++i)bcj[i]=i;//并查集初始化
//
for(int i=1;i<=n;i++)cin>>x[i]>>y[i]>>z[i];//读取结点x坐标y坐标
int cnt=0;
for(int v1=1;v1<=n;++v1)for(int v2=v1+1;v2<=n;++v2){//求出任意两点的权重
double w=sqrt(pow((x[v1]-x[v2]),2)+pow((y[v1]-y[v2]),2))+pow((z[v1]-z[v2]),2);//v1的x坐标减去v2的x坐标...
edge[++cnt]={v1,v2,w};
}
sort(edge+1,edge+cnt+1,cmp);
int MSTm = 0;
double sumw = 0.0;
//解决了任意孤立点(一个点就是一个集合),然后对每个点作n-1个点的相连边并排序,保证每次取得是最短的,并且使用并查集避免出现环路.
//取得边是离散的,总可以取完
for(int i=1;i<=cnt;++i){//依次取得边,其权重递增
if(find(edge[i].v1)!=find(edge[i].v2)){//若两边端点不属于同一个集合,则合并
merge(edge[i].v1,edge[i].v2);//每次取一条边并将其标记为一个集合,使其不出现环路
++MSTm;
sumprimzuofaw+=edge[i].w;//获取MST中最大的边
}
if(MSTm==n-1)break;//n-1条边就可以构造MST
}
cout<<fixed<<setprecision(2)<<sumw<<endl;
return 0;
}
prim做法(加点)
#include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAXN = 1005;
vector<int> demo;
double closest[MAXN], lowcost[MAXN];
int m, n; // m为节点的个数,n为边的数量
double G[MAXN][MAXN]; // 邻接矩阵
double prim()
{
for (int i = 0; i < m; i++)
{
lowcost[i] = INF;
}
for (int i = 0; i < m; i++)
{
closest[i] = 0;
}
closest[0] = -1; // 加入第一个点,-1表示该点在集合U中,否则在集合V中
int num = 0, e = 0; // e为最新加入集合的点
double ans=0;
while (num < m - 1) // 加入m-1条边
{
int miedge = -1;
double micost = INF;
for (int i = 0; i < m; i++)
if (closest[i] != -1)
{
double temp = G[e][i];
if (temp < lowcost[i])
{
lowcost[i] = temp;
closest[i] = e;
}
if (lowcost[i] < micost)
micost = lowcost[miedge = i];
}
ans += micost;
demo.push_back(micost);
closest[e = miedge] = -1;
num++;
}
return ans;
}
struct node
{
double x, y, h;
} dis[MAXN];
double getDistance(node a, node b)
{
return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2)) + pow(a.h - b.h, 2);
}
int main()
{
scanf("%d", &m);
for (int i = 0; i < m; i++)
scanf("%lf%lf%lf", &dis[i].x, &dis[i].y, &dis[i].h);
for (int i = 0; i < m - 1; i++)
for (int j = i + 1; j < m; j++)
{
G[i][j] = getDistance(dis[i], dis[j]);
G[j][i] = G[i][j];
}
printf("%.2lf", prim());
// for (int i = 0; i < m - 1; i++)
// cout << demo[i] << " ";
return 0;
}