Python快速入门系列-9(Python项目实战)

news2024/11/23 15:33:29

第九章:Python项目实战

    • 9.1 开发一个简单的Web应用
      • 9.1.1 项目概述
      • 9.1.2 环境准备
      • 9.1.3 项目结构
      • 9.1.4 代码实现
        • 9.1.4.1 创建数据库模型
        • 9.1.4.2 创建视图
        • 9.1.4.3 实用工具函数
        • 9.1.4.4 运行应用
      • 9.1.5 模板设计
    • 9.2 数据分析与可视化项目
      • 9.2.1 项目概述
      • 9.2.2 环境准备
      • 9.2.3 数据分析
      • 9.2.4 数据可视化
    • 9.3 机器学习模型应用实践
      • 9.3.1 项目概述
      • 9.3.2 环境准备
      • 9.3.3 构建机器学习模型
      • 总结

开篇图

在前面的章节中,我们学习了Python的基础知识、面向对象编程、标准库的使用、高级特性以及Web开发和数据分析的相关内容。现在,我们将进入到实战阶段,通过具体的项目来巩固和应用所学的知识。本章将介绍三个实战项目:开发一个简单的Web应用、数据分析与可视化项目、机器学习模型应用实践。

9.1 开发一个简单的Web应用

9.1.1 项目概述

我们将使用Flask框架来开发一个简单的博客Web应用。用户可以浏览文章列表、查看文章详情、发表评论。在这个项目中,我们将涉及到前后端的基本交互、数据库的使用以及Web框架的应用。

9.1.2 环境准备

首先,确保你已经安装了Python和Flask。可以通过以下命令安装Flask:

pip install Flask

9.1.3 项目结构

我们的项目结构如下:

/your_project
    /templates
        index.html
        post.html
        base.html
    /app
        __init__.py
        models.py
        views.py
        utils.py
    run.py

9.1.4 代码实现

9.1.4.1 创建数据库模型

models.py中定义文章和评论的模型:

from flask_sqlalchemy import SQLAlchemy

db = SQLAlchemy()

class Post(db.Model):
    id = db.Column(db.Integer, primary_key=True)
    title = db.Column(db.String(100), nullable=False)
    content = db.Column(db.Text, nullable=False)
    created_at = db.Column(db.DateTime, nullable=False, default=db.func.now())

class Comment(db.Model):
    id = db.Column(db.Integer, primary_key=True)
    author = db.Column(db.String(100), nullable=False)
    post_id =

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1564926.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

file_get_contents(‘php://input‘); 这个postman要如何传参

在 Postman 中传递参数给 file_get_contents(php://input); 是通过请求的 Body 部分来实现的。使用 Postman 进行 API 接口测试时,可以按照以下步骤来传递参数: 打开 Postman 并创建一个新的请求。在请求的 URL 地址栏输入你的 API 地址。选择请求方法为…

Spark实战:词频统计

文章目录 一、Spark实战:词频统计(一)Scala版1、分步完成词频统计2、一步搞定词频统计 (二)Python版1、分步完成词频统计2、一步搞定词频统计 二、实战总结 一、Spark实战:词频统计 (一&#x…

【Python时序预测系列】基于ConvLSTM实现单变量时间序列预测(源码)

这是我的第252篇原创文章。 一、引言 ConvLSTM是一种融合了卷积神经网络(CNN)和长短期记忆网络(LSTM)的混合神经网络结构,专门用于处理时空序列数据。ConvLSTM结合了CNN对空间特征的提取和LSTM对时间序列建模的能力&a…

CentOS7安装flink1.17完全分布式

前提条件 准备三台CenOS7机器,主机名称,例如:node2,node3,node4 三台机器安装好jdk8,通常情况下,flink需要结合hadoop处理大数据问题,建议先安装hadoop,可参考 hadoop安…

曲线降采样之道格拉斯-普克算法Douglas–Peucker

曲线降采样之道格拉斯-普克算法Douglas–Peucker 该算法的目的是,给定一条由线段构成的曲线,找到一条点数较少的相似曲线,来近似描述原始的曲线,达到降低时间、空间复杂度和平滑曲线的目的。 附赠自动驾驶学习资料和量产经验&…

【C++】哈希之位图

目录 一、位图概念二、海量数据面试题 一、位图概念 假如有40亿个无重复且没有排序的无符号整数,给一个无符号整数,如何判断这个整数是否在这40亿个数中? 我们用以前的思路有这些: 把这40亿个数遍历一遍,直到找到为…

AI音乐GPT时刻来临:Suno 快速入门手册!

✨✨ 欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨ 🌟🌟 欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢,在这里我会分享我的知识和经验。&am…

使用fusesource的mqtt-client-1.7-uber.jar,mqtt发布消息出去,接收端看到的是中文乱码,如何解决?

🏆本文收录于「Bug调优」专栏,主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&&…

是否有替代U盘,可安全交换的医院文件摆渡方案?

医院内部网络存储着大量的敏感医疗数据,包括患者的个人信息、病历记录、诊断结果等。网络隔离可以有效防止未经授权的访问和数据泄露,确保这些敏感信息的安全。随着法律法规的不断完善,如《网络安全法》、《个人信息保护法》等,医…

基于Springboot+Mybatis实现个人理财系统

基于SpringbootMybatis实现个人理财系统 博主介绍:多年java开发经验,专注Java开发、定制、远程、文档编写指导等,csdn特邀作者、专注于Java技术领域 作者主页 央顺技术团队 Java毕设项目精品实战案例《500套》 欢迎点赞 收藏 ⭐留言 文末获取源码联系方式…

Python机器学习实验 数据处理之Numpy

一、实验目的 1. 了解numpy库的基本功能 2. 掌握Numpy库的对数组的操作与运算 二、实验工具: 1. Anaconda 2. Numpy 三、Numpy简介 Numpy 的英文全称为 Numerical Python,指Python 面向数值计算的第三方库。Numpy 的特点在于,针对 Pyt…

多模态学习实战手册:读懂CompassRank榜单的评测指标!

1. 前言 榜单链接:CompassRank CompassRank 是一个中立且全面的性能榜单,作为大模型评测体系 OpenCompass2.0 中各类榜单的承载平台。它覆盖多领域、多任务下的模型性能,并定期更新,以提供动态的行业洞察。 CompassRank 保持中立性,不受任何商业利益干扰,并依托于 Com…

Springboot集成knife4j (swagger)

1、添加依赖 在pom.xml 文件中添加 knife4j-spring-boot-starter 的依赖 <dependency> <groupId>com.github.xiaoymin</groupId> <artifactId>knife4j-spring-boot-starter</artifactId> <version>3.0.3</version> </depe…

D-迷恋网游(遇到过的题,做个笔记)

我的代码&#xff1a; #include <iostream> using namespace std; int main() {int a, b, c; //a表示内向&#xff0c;b表示外向&#xff0c;c表示无所谓cin >> a >> b >> c; //读入数 if (b % 3 0 || 3-b % 3 < c) //如果外向的人能够3人组成…

大数据学习第十二天(mysql不会的查询1)

1、数据 /*创建部门表*/ CREATE TABLE dept( deptno INT PRIMARY KEY, dname VARCHAR(50) comment 部门名称, loc VARCHAR(50) comment 工作地点 ); /*创建雇员表*/ CREATE TABLE emp( empno INT PRIMARY KEY, ena…

C++语言学习(三)——内联函数、auto、for循环、nullptr

1. 内联函数 &#xff08;1&#xff09;概念 以inline修饰的函数叫做内联函数&#xff0c;编译时C编译器会在调用内联函数的地方展开&#xff0c;没有函数调 用建立栈帧的开销&#xff0c;内联函数提升程序运行的效率。 内联函数是一种编译器指令&#xff0c;用于告诉编译器…

操作系统—读者-写者问题及Peterson算法实现

文章目录 I.读者-写者问题1.读者-写者问题和分析2.读者—写者问题基本解法3.饥饿现象和解决方案总结 II.Peterson算法实现1.Peterson算法问题与分析(1).如何无锁访问临界区呢&#xff1f;(2).Peterson算法的基本逻辑(3).写对方/自己进程号的区别是&#xff1f; 2.只包含意向的解…

软考高级架构师:存储管理-磁盘管理概念和例题

作者&#xff1a;明明如月学长&#xff0c; CSDN 博客专家&#xff0c;大厂高级 Java 工程师&#xff0c;《性能优化方法论》作者、《解锁大厂思维&#xff1a;剖析《阿里巴巴Java开发手册》》、《再学经典&#xff1a;《Effective Java》独家解析》专栏作者。 热门文章推荐&am…

GD32F470_MPU-6050模块 三轴加速度 陀螺仪6DOF模块 有代码原理图 GY-521模块移植

2.13 MPU6050六轴传感器 MPU6050 是 InvenSense 公司推出的整合性 6 轴运动处理组件&#xff0c;其内部整合了 3 轴陀螺仪和 3 轴加速度传感器&#xff0c;并且含有一个IIC 接口&#xff0c; 可用于连接外部磁力传感器&#xff0c;并利用自带的数字运动处理器&#xff08;DMP: …

基于ssm的寝室管理系统(java项目+文档+源码)

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于ssm的寝室管理系统。项目源码以及部署相关请联系风歌&#xff0c;文末附上联系信息 。 项目简介&#xff1a; 寝室管理系统设计的主要使用者分为…