【STM32嵌入式系统设计与开发】——12IWDG(独立看门狗应用)

news2025/1/10 20:45:56

这里写目录标题

  • 一、任务描述
  • 二、任务实施
    • 1、ActiveBeep工程文件夹创建
    • 2、函数编辑
      • (1)主函数编辑
      • (2)USART1初始化函数(usart1_init())
      • (3)USART数据发送函数( USART1_Send_Data())
      • (4)USART数据发送函数( USART1_IRQHandler())
      • (5)系统时间初始化函数( SystemTinerInit())
      • (6)等待计时函数( WaitTimerOut())
      • (7)系统时间定时器中断服务函数( TIM3_IRQHandler())
      • (8)获取系统计时时间函数( GetSystemTimer())
      • (9)外部中断4初始化函数( EXTIX_Init())
      • (10)外部中断4服务函数( EXTI4_IRQHandler())
      • (11)独立看门狗初始化函数(IWDG_Init())
      • (12)喂独立看门狗函数(IWDG_Feed())
    • 3、宏定义
      • 定时器宏定义
      • 中断宏定义
      • 独立看门狗宏定义
    • 4、知识链接
      • (1)独立看门狗
      • (2)独立看门狗时间计算
    • 5、工程测试


STM32资料包:
百度网盘下载链接:链接:https://pan.baidu.com/s/1mWx9Asaipk-2z9HY17wYXQ?pwd=8888
提取码:8888


一、任务描述

在这里插入图片描述

二、任务实施

观察电路图:
TXD(底板) ————————> PA10
RXD(底板) ————————> PA9
DK1(底板) ————————> PC4
D1 (底板) ————————> PA8
使用USB-AB型数据线,连接15核心板USB口,串口发送接收到的数据。在这里插入图片描述

1、ActiveBeep工程文件夹创建

步骤1:复制工程模板“1_Template”重命名为“9_IWDG”。
在这里插入图片描述

步骤2:修改项目工程名,先删除projects文件夹内除了Template.uvprojx文件外的所有内容并修改为“IWDG.uvprojx”。并删除output/obj和output/lst中的所有文件。
请添加图片描述

步骤3:运行“Exit.uvprojx”打开目标选项“Options for Target”中的“Output”输出文件,并修改可执行文件名称为“IWDG”点击“OK”保存设置。最后点击“Rebuild”编译该工程生成Usart文件。
请添加图片描述
步骤4:复制“2_SingleKey”中的"1_LED"和"SingleKey"文件复制到hardware中。
请添加图片描述
步骤5:在“system”中新建“iwdg”文件夹,并新建“iwdg.c”和“iwdg.h”文件。在这里插入图片描述
步骤5:工程组文件中添加“led.c”和“SingleKey.c”文件。
请添加图片描述
步骤5:工程组文件中添加“iwdg.c”和“iwdg.h”文件。
在这里插入图片描述
步骤6:目标选项添加添加头文件路径。
在这里插入图片描述

2、函数编辑

(1)主函数编辑

置的硬件设备,用于监视单片机的运行情况。如果程序出现了错误或者陷入了无限循环,独立看门狗就会启动,重置单片机,让其恢复到安全状态。
在这里插入图片描述
步骤1:端口初始化准备

	//函数初始化,端口准备
	delay_init();                   //启动滴答定时器
    usart1_init(9600);              //USART1初始化
	LED_Init();                     //板载LED初始化
	SystemTinerInit(1000-1,7200-1); //系统时间初始化 定时100ms
	ExpKeyInit();                   //开发板按键初始化
	LED = 0;  
	delay_ms(800);                  //让人看得到灭
	IWDG_Init(4,625);               //与分频数为64,重载值为625,溢出时间为1s
	LED = 1;
	delay_ms(800);

在这里插入图片描述
步骤2:实现一个简单的计时器,并在每秒打印一次计时信息。利用LED状态的改变来指示系统正在运行。

	while(1)
	{	
		IWDG_Feed();//如果DK1按下,则喂狗
		
		LED = 0;
		delay_ms(100);
		LED = 1;
		delay_ms(100);
		
        if(!DK1)    //按下DK1按键
		delay_ms(1000);
		
		delay_ms(20);
	}	

在这里插入图片描述

(2)USART1初始化函数(usart1_init())

配置了 PA9 为复用推挽输出,用于 USART1 的 TXD,并配置了 PA10 为浮空输入,用于 USART1 的 RXD。并配置了 USART1 的参数,包括波特率、数据位长度、停止位数、校验位、硬件流控制和工作模式。

/*********************************************************************
 @Function  : USART1初始化
 @Parameter : bound : 波特率 
 @Return    : N/A
**********************************************************************/   	
void usart1_init(uint32_t bound)
{
    GPIO_InitTypeDef GPIO_InitStructure;             										          // 定义 GPIO 初始化结构体
    USART_InitTypeDef USART_InitStructure;            										          // 定义 USART 初始化结构体
    NVIC_InitTypeDef NVIC_InitStructure;              										          // 定义 NVIC 初始化结构体

    /* 时钟使能:启用 USART1 和 GPIOA 的时钟 */
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE);

    /* 引脚复用配置 */  
    // 配置 PA9 为复用推挽输出,用于 USART1 的 TXD
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;   		                             // 设置 GPIO 端口
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;                                // 设置 GPIO 速度
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; 								 // 设置 GPIO 模式为复用推挽
    GPIO_Init(GPIOA, &GPIO_InitStructure);          							     // 初始化 GPIO

    // 配置 PA10 为浮空输入,用于 USART1 的 RXD
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;                                      // 设置 GPIO 端口
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;                           // 设置 GPIO 模式为浮空输入
    GPIO_Init(GPIOA, &GPIO_InitStructure);                                          // 初始化 GPIO

    /* NVIC 中断配置 */ 
    NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;                               // 设置中断通道为 USART1
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3;                       // 设置抢占优先级为3
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;                              // 设置子优先级为3
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;                                 // 使能中断通道
    NVIC_Init(&NVIC_InitStructure);                                                 // 初始化 NVIC

    /* USART1 配置 */ 
    USART_InitStructure.USART_BaudRate = bound;                                     // 设置波特率
    USART_InitStructure.USART_WordLength = USART_WordLength_8b;                     // 设置数据位长度为8位
    USART_InitStructure.USART_StopBits = USART_StopBits_1;                          // 设置停止位为1位
    USART_InitStructure.USART_Parity = USART_Parity_No;                             // 设置校验位为无校验
    USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; // 设置硬件流控制为无
    USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;                 // 设置工作模式为接收和发送
    USART_Init(USART1, &USART_InitStructure);                                       // 初始化 USART1

		/*中断配置*/
		USART_ITConfig(USART1,USART_IT_RXNE,ENABLE);                                //开接受中断 
		USART_ITConfig(USART1,USART_IT_IDLE,ENABLE);                                //开空闲中断
		USART_ITConfig(USART1,USART_IT_TXE,ENABLE);                                 //开发送中断	
		USART_Cmd(USART1, ENABLE);                                                  //启用USART1
		USART_DataTypeStr.Usart_Tc_State = SET;	                                    //置位发送允许标志	      
}

在这里插入图片描述

(3)USART数据发送函数( USART1_Send_Data())

初始化PD14端口,并为推挽输出。

/*********************************************************************
 @Function  : USART数据发送函数
 @Parameter : Data 	 :要发送的数据缓存.
							Lenth  :发送长度
 @Return    : 发送状态   1 :失败   0 :成功
**********************************************************************/
char USART1_Send_Data(char* Data,uint8_t Lenth) 
{
	uint8_t uNum = 0;
	if(USART_DataTypeStr.Usart_Tc_State == 1)                       //判断发送标志位是否置1
	{
		USART_DataTypeStr.Usart_Tc_State = 0;                       //将发送标志位清零,表示数据已经成功放入缓存,等待发送
		USART_DataTypeStr.Usart_Tx_Len = Lenth;                     //获取需要发送的数据的长度       
	  for(uNum = 0;uNum < USART_DataTypeStr.Usart_Tx_Len;uNum ++)   //将需要发送的数据放入发送缓存
	  {
		  USART_DataTypeStr.Usart_Tx_Buffer[uNum] = Data[uNum];
	  }
    USART_ITConfig(USART1,USART_IT_TXE,ENABLE);			            //数据放入缓存后打开发送中断,数据自动发送
	}
	return USART_DataTypeStr.Usart_Tc_State;                        //返回放数据的状态值,为1表示发送失败,为0表示发送成功了
}

在这里插入图片描述

(4)USART数据发送函数( USART1_IRQHandler())

/*********************************************************************
 @Function  : USART1中断服务函数
 @Parameter : N/A 
 @Return    : N/A
**********************************************************************/
void USART1_IRQHandler(void)                
{
	 uint8_t Clear = Clear;                                                                           // 定义清除标志的变量,并初始化为自身
	static uint8_t uNum = 0;                                                                          // 静态变量,用于循环计数
	 
  if(USART_GetITStatus(USART1,USART_IT_RXNE) != RESET)                                                // 判断读数据寄存器是否为非空
  {
    USART_ClearFlag(USART1, USART_IT_RXNE);                                                           // 清零读数据寄存器,其实硬件也可以自动清零
    USART_DataTypeStr.Usart_Rx_Buffer[USART_DataTypeStr.Usart_Rx_Num ++] = \
		(uint16_t)(USART1->DR & 0x01FF);                                                              // 将接收到的数据存入接收缓冲区
		(USART_DataTypeStr.Usart_Rx_Num) &= 0xFF;                                                     // 防止缓冲区溢出
  } 
	
	else if(USART_GetITStatus(USART1,USART_IT_IDLE) != RESET)   // 检测空闲
	{
	  Clear = USART1 -> SR;                                                                         // 读SR位
		Clear = USART1 -> DR;                                                                       // 读DR位,
	  USART_DataTypeStr.Usart_Rx_Len = USART_DataTypeStr.Usart_Rx_Num;                              // 获取数据长度
		for(uNum = 0; uNum < USART_DataTypeStr.Usart_Rx_Len; uNum ++)          
		{
				USART_DataTypeStr.Usart_Rx_Data[uNum] = USART_DataTypeStr.Usart_Rx_Buffer[uNum];      // 将接收到的数据复制到接收数据缓冲区
		}
		USART_DataTypeStr.Usart_Rx_Num = 0;                                                           // 清空接收计数器
		USART_DataTypeStr.Usart_Rc_State = 1;                                                         // 数据读取标志位置1,读取串口数据
	}
	
	if(USART_GetITStatus(USART1,USART_IT_TXE) != RESET)                                                  // 判断发送寄存器是否为非空
  {
		USART1->DR = \
		((USART_DataTypeStr.Usart_Tx_Buffer[USART_DataTypeStr.Usart_Tx_Num ++]) & (uint16_t)0x01FF);    // 发送数据
		(USART_DataTypeStr.Usart_Tx_Num) &= 0xFF;                                                       // 防止缓冲区溢出
    if(USART_DataTypeStr.Usart_Tx_Num >= USART_DataTypeStr.Usart_Tx_Len)
    {   
			USART_ITConfig(USART1,USART_IT_TXE,DISABLE);                                                // 发送完数据,关闭发送中断
			USART_DataTypeStr.Usart_Tx_Num = 0;                                                         // 清空发送计数器
			USART_DataTypeStr.Usart_Tc_State = 1;                                                       // 发送标志置1,可以继续发送数据了
    } 		
	}
	
}

在这里插入图片描述

(5)系统时间初始化函数( SystemTinerInit())

Tout=((arr+1)*(psc+1))/Ft us,Ft=定时器工作频率,单位:Mhz;初始化TIM3定时器,配置定时器的周期值、预分频值、计数模式等参数,并使能定时器及其中断

/*********************************************************************
 @Function  : 系统时间初始化
 @Parameter : arr:自动重装值。
							psc:时钟预分频数
 @Return    : N/A
 @Read 			:Tout=((arr+1)*(psc+1))/Ft us,Ft=定时器工作频率,单位:Mhz
**********************************************************************/
void SystemTinerInit(uint16_t arr, uint16_t psc)
{
    TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;               // 定义TIM基本参数结构体

    NVIC_InitTypeDef NVIC_InitStructure;                         // 定义中断优先级配置结构体

    /* 时钟使能 */
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);         // 使能TIM3时钟

    /* TIM配置 */
    TIM_TimeBaseStructure.TIM_Period = arr;                      // 设置定时器的周期值
    TIM_TimeBaseStructure.TIM_Prescaler = psc;                   // 设置定时器的预分频值
    TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;      // 设置时钟分频因子为1
    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  // 设置计数模式为向上计数
    TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);              // 初始化TIM3定时器

    /* 允许中断 */
    TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);                   // 使能TIM3更新(溢出)中断

    /* NVIC 配置 */
    NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;              // 设置TIM3中断通道
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;    // 设置TIM3中断的抢占优先级为0
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;           // 设置TIM3中断的子优先级为3
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;              // 使能TIM3中断通道
    NVIC_Init(&NVIC_InitStructure);                              // 初始化NVIC

    /* 使能TIMx */
    TIM_Cmd(TIM3, ENABLE);                                       // 使能TIM3定时器
}

(6)等待计时函数( WaitTimerOut())

定时器超时检测功能,根据传入的参数 gTimer 和系统时钟计数器,判断定时器是否超时,并返回相应的状态。

/*********************************************************************
 @Function  : 等待计时
 @Parameter : gTimer :等待时间,100ms一个单位
 @Return    : 1表示超时,0表示未超时
**********************************************************************/
uint8_t WaitTimerOut(uint32_t gTimer)
{	
	uint32_t GTr = 0;                         // 定义变量用于存储定时器剩余时间

	
	if(gTimer==0) return 1;                   // 如果等待时间为0,则直接返回1,表示不等待

	
	GTr = SystemTimer % gTimer;	              // 计算定时器剩余时间

	
	if((GTr==0) && (!Rti) && (Gti != gTimer)) // 如果定时器剩余时间为0,且上次未检测到超时,并且当前定时器时间不等于上次记录的时间
	{ 
		Rti=1;                                // 设置标志表示检测到定时器超时
		Gti = gTimer;                         // 更新记录的定时器时间
		return 1;                             // 返回1表示超时
	}
	
	else if((GTr!=0) && (Rti))                // 如果定时器剩余时间不为0,且上次检测到超时,则将标志置为0
		Rti=0;


	if(!GetTimer) GetTimer = SystemTimer;	  // 如果记录定时器开始时间为0,则将其设置为当前系统时间

	
	if(SystemTimer - GetTimer == gTimer)      // 如果当前系统时间减去记录的定时器开始时间等于设定的等待时间,则返回1表示超时
	{ 
		GetTimer = 0;                         // 将记录的定时器开始时间清零,准备下一次记录
		return 1;                             // 返回1表示超时
	}

	return 0;                                 // 返回0表示未超时
}

在这里插入图片描述

(7)系统时间定时器中断服务函数( TIM3_IRQHandler())

实现TIM3定时器的中断服务程序,每次定时器溢出时,增加 SystemTimer 计数值,并在计数到60时归零,同时清除中断标志位。

/*********************************************************************
 @Function  : 系统时间定时器中断服务函数
 @Parameter : N/A
 @Return    : N/A
**********************************************************************/
void TIM3_IRQHandler(void)   
{	
  // 检查定时器更新中断是否触发
	if(TIM_GetITStatus(TIM3, TIM_IT_Update) == SET) // 溢出中断
	{
		SystemTimer++;                                // 系统时间计数器加1

		if(SystemTimer == 60)	                        // 如果系统时间计数器达到60,则重置为0,并且清零记录的定时器开始时间
		{	
		    SystemTimer = 0;
			GetTimer = 0;
		}
	}
  // 清除定时器更新中断标志位
	TIM_ClearITPendingBit(TIM3, TIM_IT_Update);     // 清除中断标志位
}

在这里插入图片描述

(8)获取系统计时时间函数( GetSystemTimer())

/*********************************************************************
 @Function  : 获取系统计时时间
 @Parameter : N/A
 @Return    : N/A
**********************************************************************/
uint32_t GetSystemTimer(void)
{
   return SystemTimer;
}

在这里插入图片描述

(9)外部中断4初始化函数( EXTIX_Init())

/*********************************************************************
 @Function  : 外部中断4初始化
 @Parameter : N/A
 @Return    : N/A
**********************************************************************/
void EXTIX_Init(void)
{
 	EXTI_InitTypeDef EXTI_InitStructure;                      // 定义外部中断配置结构体
 	NVIC_InitTypeDef NVIC_InitStructure;                      // 定义中断控制器配置结构体
  /*时钟使能*/
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);	      // 使能 AFIO 时钟,用于配置外部中断的映射
  /*中断线配置*/   
  GPIO_EXTILineConfig(GPIO_PortSourceGPIOC, GPIO_PinSource4); // 配置外部中断线,将 PC4 映射到外部中断4
  EXTI_InitStructure.EXTI_Line = EXTI_Line4;	              // 设置外部中断线为 EXTI4
  EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;	      // 设置外部中断模式为中断模式
  EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;     // 设置触发方式为下降沿触发
  EXTI_InitStructure.EXTI_LineCmd = ENABLE;                   // 使能外部中断线
  EXTI_Init(&EXTI_InitStructure);	 	                      // 初始化外部中断配置
	/*NVIC配置*/
  NVIC_InitStructure.NVIC_IRQChannel = EXTI4_IRQn;	          // 设置中断向量为外部中断4
  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x02;// 设置抢占优先级为2
  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x03;       // 设置子优先级为3
  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;	          // 使能外部中断4
  NVIC_Init(&NVIC_InitStructure);                             // 初始化中断控制器配置
	/*关闭蜂鸣器*/
	beep = 0;                                                 // 初始化蜂鸣器状态为关闭
}

(10)外部中断4服务函数( EXTI4_IRQHandler())

/*********************************************************************
 @Function  : 外部中断4服务程序
 @Parameter : N/A
 @Return    : N/A
**********************************************************************/
void EXTI4_IRQHandler(void)
{
	delay_ms(10);//消抖
	if(DK1==0)				 
		beep =!beep;	
	EXTI_ClearITPendingBit(EXTI_Line4); //清除LINE4上的中断标志位  
}

在这里插入图片描述

(11)独立看门狗初始化函数(IWDG_Init())

/*********************************************************************
 @Function  : 初始化独立看门狗
 @Parameter : prer : 分频数:0~7(只有低3位有效!)
							rlr  : 重装载寄存器值:低11位有效.
 @Return    : N/A
 @Read 			: 1、分频因子=4*2^prer.但最大值只能是256!
							2、时间计算(大概):Tout=((4*2^prer)*rlr)/40 (ms).
**********************************************************************/
void IWDG_Init(uint8_t prer,uint16_t rlr) 
{	
 	IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable);  //使能对寄存器IWDG_PR和IWDG_RLR的写操作
	
	IWDG_SetPrescaler(prer);                       //设置IWDG预分频值:设置IWDG预分频值为64
	
	IWDG_SetReload(rlr);                           //设置IWDG重装载值
	
	IWDG_ReloadCounter();                          //按照IWDG重装载寄存器的值重装载IWDG计数器
	 
	IWDG_Enable();                                 //使能IWDG
}

在这里插入图片描述

(12)喂独立看门狗函数(IWDG_Feed())

/*********************************************************************
 @Function  : 喂独立看门狗
 @Parameter : N/A
 @Return    : N/A
 @Read 			: 不喂狗会自动复位系统				
**********************************************************************/
void IWDG_Feed(void)
{   
 	IWDG_ReloadCounter();                          //重新加载						   
}

在这里插入图片描述

3、宏定义

步骤1:主函数添加所需的头文件,主源文件部分报错消失

#include ".\iwdg\iwdg.h"

/***********Hardweare***************/
#include "led.h"
#include "SingleKey.h"

在这里插入图片描述

步骤2:添加中断源文件所需的头文件

#include ".\iwdg\iwdg.h"
#include "stm32f10x_iwdg.h" 

在这里插入图片描述

步骤3:添加宏定义

#define USART_RX_LEN  200               // 接收缓冲区最大长度
#define USART_TX_LEN  200               // 发送缓冲区最大长度
#define UART_NUM      10                // 串口结构体最大对象数量

在这里插入图片描述
步骤4:添加函数声明

void usart1_init(uint32_t bound);
extern USART_DataTypeDef USART_DataTypeStr; 
char USART1_Send_Data(char* Data,uint8_t Lenth);

在这里插入图片描述
步骤5:添加数据类型和宏的头文件

//定义串口数据结构体
typedef struct USART_DataType 
{
    uint8_t Usart_Rx_Len;          // 接收缓冲区长度
    uint8_t Usart_Tx_Len;          // 发送缓冲区长度
    uint8_t Usart_Rx_Num;          // 接收数据计数
    uint8_t Usart_Tx_Num;          // 发送数据计数
    uint8_t Usart_Rc_State;        // 接收状态标志位
    uint8_t Usart_Tc_State;        // 发送状态标志位
    char Usart_Rx_Buffer[USART_RX_LEN]; // 接收缓冲区
    char Usart_Tx_Buffer[USART_TX_LEN]; // 发送缓冲区
    char Usart_Rx_Data[USART_RX_LEN];   // 接收数据
    char Usart_Tx_Data[USART_TX_LEN];   // 发送数据
} USART_DataTypeDef;

在这里插入图片描述
步骤6:定义一个串口数组变量

USART_DataTypeDef USART_DataTypeStr={0};

在这里插入图片描述

定时器宏定义

步骤1:创建一个宏定义保护

#ifndef __TIMER_H
#define __TIMER_H

#endif

在这里插入图片描述

步骤2:添加函数声明

void SystemTinerInit(uint16_t arr,uint16_t psc);//系统时间初始化函数
uint32_t GetSystemTimer(void);                  //获取系统计时时间函数
uint8_t WaitTimerOut(uint32_t gTimer);          //等待计时函数

在这里插入图片描述

步骤3:添加数据类型和宏的头文件

#include <stdint.h> 

在这里插入图片描述

中断宏定义

步骤1:创建一个宏定义保护

#ifndef __TIMER_H
#define __TIMER_H

#endif

在这里插入图片描述
步骤2:添加函数声明

void EXTIX_Init(void);	

在这里插入图片描述
步骤3:添加数据类型和宏的头文件

#include <stdint.h> 

在这里插入图片描述

独立看门狗宏定义

步骤1:创建一个宏定义保护

#ifndef __IWDG_H
#define __IWDG_H

#endif

在这里插入图片描述
步骤2:添加函数声明

void IWDG_Init(uint8_t prer,uint16_t rlr);
void IWDG_Feed(void);

在这里插入图片描述
步骤3:添加数据类型和宏的头文件

#include <stdint.h> 

在这里插入图片描述

4、知识链接

(1)独立看门狗

在这里插入图片描述

在 STM32 单片机中,独立看门狗也是类似的。它是一个内置的硬件设备,用于监视单片机的运行情况。如果程序出现了错误或者陷入了无限循环,独立看门狗就会启动,重置单片机,让其恢复到安全状态,以防止系统崩溃或者出现不可预料的问题。就像在厨房里一样,独立看门狗在单片机中扮演着保护系统安全的角色。

(2)独立看门狗时间计算

初始化独立看门狗为1S:
IWDG_Init(uint8_t prer,uint16_t rlr)
时间计算(大概):Tout=((4*2^prer)rlr)/40 (ms)
分频因子=4
2^prer.
但最大值只能是256!
1000ms = 4x2^4x625/40ms

5、工程测试

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1559154.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C++】递归快速幂

class Solution { public:double myPow(double x, int n) {if(n<0){long long a -(long long)n;double temp dfs(x,a);return 1.0/temp;}else{double temp dfs(x,n);return temp;}}double dfs(double x,int n)//给一个数&#xff0c;给一个n&#xff0c;求出x的n次幂{//递…

npm软件包管理器

npm软件包管理器 一.npm 使用步骤二.npm安装所有依赖三.npm全局软件包-nodemon pm 简介链接&#xff1a; 软件包管理器&#xff0c;用于下载和管理 Node.js 环境中的软件包 一.npm 使用步骤 1.初始化清单文件&#xff1a; npm init -y &#xff08;得到 package.json 文件&am…

【C++庖丁解牛】自平衡二叉搜索树--AVL树

&#x1f341;你好&#xff0c;我是 RO-BERRY &#x1f4d7; 致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 &#x1f384;感谢你的陪伴与支持 &#xff0c;故事既有了开头&#xff0c;就要画上一个完美的句号&#xff0c;让我们一起加油 目录 前言1 AVL树的概念2. AVL…

2024最新版Android studio安装入门教程(非常详细)

目录 JDK安装与配置 一、下载JDK 二、JDK安装 三、JDK的环境配置 四、JDK的配置验证 Android studio安装 Android studio连接手机真机调试&#xff08;以华为鸿蒙为例&#xff09; 一、新建一个android项目 二、进入项目面板 三、配置Android Studio 四、安装手机驱…

最大限度地提高生产力:ChatGPT 如何改变您的日常生活

智能生活新潮流&#xff1a;如何用ChatGPT提升你的工作效率 拥抱人工智能革命 在当今快节奏的世界中&#xff0c;寻找提高生产力的方法就像找到一张成功的金票。 但不要害怕&#xff0c;因为我有一些令人兴奋的消息要告诉你&#xff01; 进入 GPT 工具的世界&#xff0c;这是一…

vue3+ts项目 | axios 的测试 | 测试接口

在 App.vue 中&#xff0c;测试接口 // 测试接口import request from /utils/request;import { onMounted } from vue;onMounted(() > {request.get(/hosp/hospital/1/10).then((res) > {console.log("APP组件展示获取的数据",res);})}) 在request.ts中&…

深入探索位图技术:原理及应用

文章目录 一、引言二、位图&#xff08;Bitset&#xff09;基础知识1、位图的概念2、位图的表示3、位图操作 三、位图的应用场景1、数据查找与存储2、数据去重与排序 四、位图的实现 一、引言 位图&#xff0c;以其高效、简洁的特性在数据处理、存储和检索等多个领域发挥着举足…

JJJ:linux系统中第一个进程

以linux4.19内核linux系统中第一个进程。 执行shell指令 ps -ef 结果如下&#xff1a; xxxxxx-virtual-machine:~$ ps -ef UID PID PPID C STIME TTY TIME CMD root 1 0 0 20:55 ? 00:00:02 /sbin/init splash root …

Postgresql导出数据和结构后再去另外一个Postgresql数据库中导入失败

参考教程&#xff1a; postgresql 在导入建表sql时 遇到错误 &#xff1a;https://blog.csdn.net/weixin_37706944/article/details/132321731 是因为原表定义了自增字段&#xff0c;解决办法&#xff1a; 解决方法&#xff1a; 执行如下sql后再新建表&#xff0c;就可以了 DR…

【docker】nexus 本地 maven配置

1、这篇文章中说明了如何搭建私服 【docker】搭建Nexus私服-CSDN博客文章浏览阅读2次。4、点击登陆&#xff08;账号&#xff1a;admin 秘密&#xff1a;在容器内 /nexus-data/admin.password 文件中)注意我的端口号是 10002&#xff0c;注意你的端口号。7、设置maven-central…

【数据分析面试】1. 计算年度收入百分比(SQL)

题目 你需要为公司的营收来源生成一份年度报告。计算截止目前为止&#xff0c;在表格中记录的第一年和最后一年所创造的总收入百分比。将百分比四舍五入到两位小数。 示例&#xff1a; 输入&#xff1a; annual_payments 表 列名类型amountINTEGERcreated_atDATETIMEstatusV…

COSMIC 方法 - 需求评估 映射阶段

通用软件模型 原则 - COSMIC 通用软件模型 a) 软件块跨越边界与功能用户交互、并与边界内的持久存储介质进行交互。 b) 被度量软件块的 FUR 能够被映射到唯一的一组功能处理。 c) 每个功能处理由一系列子处理组成 d) 一个子处理可以是一个数据移动或者是一个数据运算。 e) 有四…

[flink 实时流基础] 转换算子

flink学习笔记 数据源读入数据之后&#xff0c;我们就可以使用各种转换算子&#xff0c;将一个或多个DataStream转换为新的DataStream。 文章目录 基本转换算子&#xff08;map/ filter/ flatMap&#xff09;聚合算子&#xff08;Aggregation&#xff09;按键分区&#xff08;…

【Spring MVC】快速学习使用Spring MVC的注解及三层架构

&#x1f493; 博客主页&#xff1a;从零开始的-CodeNinja之路 ⏩ 收录文章&#xff1a;【Spring MVC】快速学习使用Spring MVC的注解及三层架构 &#x1f389;欢迎大家点赞&#x1f44d;评论&#x1f4dd;收藏⭐文章 目录 Spring Web MVC一: 什么是Spring Web MVC&#xff1…

成绩管理系统|基于springboot成绩管理系统的设计与实现(附项目源码+论文)

基于springboot成绩管理系统的设计与实现 一、摘要 传统办法管理信息首先需要花费的时间比较多&#xff0c;其次数据出错率比较高&#xff0c;而且对错误的数据进行更改也比较困难&#xff0c;最后&#xff0c;检索数据费事费力。因此&#xff0c;在计算机上安装毕业设计成绩管…

全局自定义指令实现图片懒加载,vue2通过js和vueuse的useintersectionObserver实现

整体逻辑&#xff1a; 1.使用全局自定义指令创建图片懒加载指令 2.在全局自定义指令中获取图片距离顶部的高度和整个视口的高度 3.实现判断图片是否在视口内的逻辑 一、使用原生js在vue2中实现图片懒加载 1.创建dom元素,v-lazy为自定义指令&#xff0c;在自定义指令传入图片…

瑞吉外卖实战学习--8、人员编辑更新

人员编辑更新 前言1、进入编辑窗口需要先获取用户信息2、通过上篇文章的update的方法来改变数据3、测试效果 前言 1、进入编辑窗口需要先获取用户信息 通过注解PathVariable 来获取路径需要携带的id然后赋值到路径上&#xff0c;再通过id查询用户信息 /*** 通过id查询用户信…

Java毕业设计-基于springboot开发的招聘信息管理系统平台-毕业论文+答辩PPT(附源代码+演示视频)

文章目录 前言一、毕设成果演示&#xff08;源代码在文末&#xff09;二、毕设摘要展示1、开发说明2、需求分析3、系统功能结构 三、系统实现展示1、系统功能模块2、管理员功能模块3、企业后台管理模块4、用户后台管理模块 四、毕设内容和源代码获取总结 Java毕业设计-基于spri…

黄金涨是商品牛市的领先信号

自2022年11月以来&#xff0c;黄金价格持续上涨&#xff0c;目前已经突破历史新高&#xff0c;历史上黄金上涨&#xff0c;大多是商品全面牛市的领先信号。在2008年Q4、2019年也出现过&#xff0c;黄金比其他商品更强&#xff0c;但随后的2009年和2020年均是商品的全面牛市。同…

【前端】layui前端框架学习笔记

【前端目录贴】 参考视频:LayUI 参考笔记:https://blog.csdn.net/qq_61313896/category_12432291.html 1.介绍 官网&#xff1a;http://layui.apixx.net/index.html 国人16年开发的框架,拿来即用,门槛低 … 2. LayUi的安装及使用 Layui 是一套开源的 Web UI 组件库&#xff0…