【C++庖丁解牛】自平衡二叉搜索树--AVL树

news2024/11/25 15:50:18
🍁你好,我是 RO-BERRY
📗 致力于C、C++、数据结构、TCP/IP、数据库等等一系列知识
🎄感谢你的陪伴与支持 ,故事既有了开头,就要画上一个完美的句号,让我们一起加油

在这里插入图片描述


目录

  • 前言
  • 1 AVL树的概念
  • 2. AVL树节点的定义
  • 3. AVL树的插入
  • 4. AVL树的旋转
    • 实现代码
  • 5 AVL树的验证
  • 6 AVL树的删除(了解)
  • 7 AVL树的性能


前言

前面对map/multimap/set/multiset进行了简单的介绍,在其文档介绍中发现,这几个容器有个共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。

1 AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  1. 它的左右子树都是AVL树
  2. 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
  3. 平衡因子 = 右子树高度 - 左子树高度

平衡因子并不是必须的,它只是一种控制方式,帮助我们更便捷的控制树

【扩充】
这里为什么高度差为1?如果高度相等不是更平衡吗?

节点是一个一个插入的,有些情况是无法做到相等的,最优就是高度差是1;比如:两个节点的树和四个节点的树等等。

在这里插入图片描述

2. AVL树节点的定义

AVL树节点的定义:

template<class T>
struct AVLTreeNode
{
	AVLTreeNode(const T& data)
		: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
		, _data(data), _bf(0)
		{}
	AVLTreeNode<T>* _pLeft;   // 该节点的左孩子
	AVLTreeNode<T>* _pRight;  // 该节点的右孩子
	AVLTreeNode<T>* _pParent; // 该节点的双亲
	T _data;
	int _bf;                  // 该节点的平衡因子
};

3. AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子

插入节点会影响新增节点的部分祖先
更新原则:

  • 若是插入的是左节点则父节点的平衡因子减1
  • 若是插入的是右节点则父节点的平衡因子加1

是否要继续更新取决于新增节点会不会影响父节点的高度,从而决定会不会影响爷爷节点

  • 更新后,父节点所在的子树高度不变则不会影响爷爷节点

说明父节点的平衡因子是1或者-1,父节点在矮的那边插入了节点,左右均衡了,于是父节点的高度不变,则不会影响到爷爷,更新结束

  • 更新后,父节点所在的子树高度改变则会影响爷爷节点

说明更新前,父节点的平衡因子是0,父节点变得不均衡,但是不违反规则,高度改变,会影响爷爷节点继续往上更新

更新后,父节点的平衡因子为2或-2,说明该子树违反了平衡规则,需要处理->旋转
代码实现:

	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;
		
		//新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性

		/*
		pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
		 1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
		 2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
 
		 此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
		 1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功
		 2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新
		 3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理
		 */
		while (parent)
		{
			 // 更新双亲的平衡因子
			if (cur == parent->left)
			{
				parent->_bf--;
			}
			else
			{
				parent->_bf++;
			}
			// 更新后检测双亲的平衡因子
			if (parent->_bf == 0)
			{
				break;
			}

			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲为根的二叉树的高度增加了一层,因此需要继续向上调整
				cur = cur->_parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent为根的树进行旋转处理
				if (parent->_bf == 2 && cur->_bf == 1)
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == -1)
				{
					RotateR(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1)
				{
					RotateLR(parent);
				}
				else
				{
					RotateRL(parent);
				}

				break;
			}
			else
			{
				// 插入之前AVL树就有问题
				assert(false);
			}
		}

		return true;
	}

4. AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,
使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:

  1. 新节点插入较高左子树的左侧—左左:右单旋

在这里插入图片描述
上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。

在旋转过程中,有以下几种情况需要考虑:

  1. 30节点的右孩子可能存在,也可能不存在
  2. 60可能是根节点,也可能是子树
  • 如果是根节点,旋转完成后,要更新根节点
  • 如果是子树,可能是某个节点的左子树,也可能是右子树
void _RotateR(PNode pParent)
{
	// pSubL: pParent的左孩子
	// pSubLR: pParent左孩子的右孩子
	PNode pSubL = pParent->_pLeft;
	PNode pSubLR = pSubL->_pRight;
	
	// 旋转完成之后,30的右孩子作为双亲的左孩子
	pParent->_pLeft = pSubLR;
	// 如果30的左孩子的右孩子存在,更新亲双亲
	if (pSubLR)
		pSubLR->_pParent = pParent;
	// 60 作为 30的右孩子
	pSubL->_pRight = pParent;

	// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲
	PNode pPParent = pParent->_pParent;

	// 更新60的双亲
	pParent->_pParent = pSubL;

	// 更新30的双亲
	pSubL->_pParent = pPParent;
	// 如果60是根节点,根新指向根节点的指针
	if (NULL == pPParent)
	{
		_pRoot = pSubL;
		pSubL->_pParent = NULL;
	}
	else
	{
	// 如果60是子树,可能是其双亲的左子树,也可能是右子树
	if (pPParent->_pLeft == pParent)
		pPParent->_pLeft = pSubL;
	else
		pPParent->_pRight = pSubL;
	}
	// 根据调整后的结构更新部分节点的平衡因子
	pParent->_bf = pSubL->_bf = 0;
}
  1. 新节点插入较高右子树的右侧—右右:左单旋
    在这里插入图片描述
    实现及情况考虑可参考右单旋。

  2. 新节点插入较高左子树的右侧—左右:先左单旋再右单旋

在这里插入图片描述
将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。

// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整
void _RotateLR(PNode pParent)
{
	PNode pSubL = pParent->_pLeft;
	PNode pSubLR = pSubL->_pRight;
    
    // 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子
	int bf = pSubLR->_bf;
    
    // 先对30进行左单旋
	_RotateL(pParent->_pLeft);
    
    // 再对90进行右单旋
	_RotateR(pParent);
	if(1 == bf)
	pSubL->_bf = -1;
	else if(-1 == bf)
	pParent->_bf = 1;
}
  1. 新节点插入较高右子树的左侧—右左:先右单旋再左单旋

在这里插入图片描述
参考右左双旋。
总结:
假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

  1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR
  • 当pSubR的平衡因子为1时,执行左单旋
  • 当pSubR的平衡因子为-1时,执行右左双旋
  1. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL
  • 当pSubL的平衡因子为-1是,执行右单旋
  • 当pSubL的平衡因子为1时,执行左右双旋

旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

实现代码

#pragma once

template<class K, class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	int _bf; // balance factor
	pair<K, V> _kv;

	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0)
		, _kv(kv)
	{}
};

template<class K, class V>
class AVLTree
{
	typedef AVLTreeNode<K, V> Node;
public:
	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;

		while (parent)
		{
			if (cur == parent->left)
			{
				parent->_bf--;
			}
			else
			{
				parent->_bf++;
			}

			if (parent->_bf == 0)
			{
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)
			{
				cur = cur->_parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				// 旋转处理
				if (parent->_bf == 2 && cur->_bf == 1)
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == -1)
				{
					RotateR(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1)
				{
					RotateLR(parent);
				}
				else
				{
					RotateRL(parent);
				}

				break;
			}
			else
			{
				// 插入之前AVL树就有问题
				assert(false);
			}
		}

		return true;
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		subR->_left = parent;
		Node* ppnode = parent->_parent;
		parent->_parent = subR;

		if (parent == _root)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (ppnode->_left == parent)
			{
				ppnode->_left = subR;
			}
			else
			{
				ppnode->_right = subR;
			}
			subR->_parent = ppnode;
		}

		parent->_bf = 0;
		subR->_bf = 0;
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		subL->_right = parent;

		Node* ppnode = parent->_parent;
		parent->_parent = subL;

		if (parent == _root)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (ppnode->_left == parent)
			{
				ppnode->_left = subL;
			}
			else
			{
				ppnode->_right = subL;
			}
			subL->_parent = ppnode;
		}

		subL->_bf = 0;
		parent->_bf = 0;
	}

	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		int bf = subLR->_bf;
		RotateL(parent->_left);
		RotateR(parent);

		if (bf == -1)
		{
			subLR->_bf = 0;
			subL->_bf = 0;
			parent->_bf = 1;
		}
		else if (bf == 1)
		{
			subLR->_bf = 0;
			subL->_bf = -1;
			parent->_bf = 0;
		}
		else if (bf == 0)
		{
			subLR->_bf = 0;
			subL->_bf = 0;
			parent->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

private:
	Node* _root = nullptr;
};

5 AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树

如果中序遍历可得到一个有序的序列,就说明为二叉搜索树

  1. 验证其为平衡树
  • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
  • 节点的平衡因子是否计算正确
int _Height(PNode pRoot);
bool _IsBalanceTree(PNode pRoot)
{
	// 空树也是AVL树
	if (nullptr == pRoot) return true;
    
	// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差
	int leftHeight = _Height(pRoot->_pLeft);
	int rightHeight = _Height(pRoot->_pRight);
	int diff = rightHeight - leftHeight;
 	// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
	// pRoot平衡因子的绝对值超过1,则一定不是AVL树
	if (diff != pRoot->_bf || (diff > 1 || diff < -1))
	return false;
	// pRoot的左和右如果都是AVL树,则该树一定是AVL树
	return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot->_pRight);
 }

6 AVL树的删除(了解)

因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。具体实现学生们可参考《算法导论》或《数据结构-用面向对象方法与C++描述》殷人昆版。

AVL树是一种自平衡的二叉搜索树,它的删除操作与插入操作类似,但需要在删除节点后进行平衡操作以保持树的平衡性。
AVL树的删除操作可以分为以下几种情况:

  1. 如果待删除的节点是叶子节点,直接删除即可。
  2. 如果待删除的节点只有一个子节点,将子节点替代待删除节点的位置。

如果待删除的节点有两个子节点,可以选择以下两种方式进行删除:

  • 找到待删除节点的前驱或后继节点,将其值复制到待删除节点,并将前驱或后继节点删除。
  • 找到待删除节点的左子树中的最大值或右子树中的最小值,将其值复制到待删除节点,并将最大值或最小值节点删除。

删除节点后,需要从被删除节点的父节点开始向上回溯,检查每个祖先节点是否平衡。如果发现某个祖先节点不平衡,需要进行相应的旋转操作来恢复平衡。

7 AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

AVL树是一种自平衡二叉搜索树,它的性能相对于普通的二叉搜索树更加稳定。AVL树的性能可以从以下几个方面来介绍:

  1. 查找操作:AVL树的查找操作与普通的二叉搜索树相同,时间复杂度为O(log n),其中n为树中节点的数量。由于AVL树是平衡的,所以查找操作的性能是稳定的。

  2. 插入和删除操作:AVL树在插入和删除节点时会进行自平衡操作,以保持树的平衡性。这些自平衡操作包括旋转和重新计算节点的平衡因子。插入和删除操作的时间复杂度也是O(log n),但由于需要进行自平衡操作,所以相对于普通二叉搜索树,AVL树的插入和删除操作可能会更耗时。

  3. 平衡性:AVL树的平衡性保证了树的高度始终保持在一个较小的范围内。具体来说,AVL树的任意节点的左右子树高度差不超过1。这种平衡性保证了查找、插入和删除操作的时间复杂度都能够保持在O(log n)。

  4. 空间复杂度:AVL树的空间复杂度与节点数量成正比,即O(n)。每个节点需要存储键值对以及额外的平衡因子信息。

总的来说,AVL树在查找操作上具有较好的性能,但在插入和删除操作上可能会稍微慢一些。然而,AVL树的平衡性保证了树的高度始终保持在一个较小的范围内,从而保证了整体的性能稳定性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1559149.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2024最新版Android studio安装入门教程(非常详细)

目录 JDK安装与配置 一、下载JDK 二、JDK安装 三、JDK的环境配置 四、JDK的配置验证 Android studio安装 Android studio连接手机真机调试&#xff08;以华为鸿蒙为例&#xff09; 一、新建一个android项目 二、进入项目面板 三、配置Android Studio 四、安装手机驱…

最大限度地提高生产力:ChatGPT 如何改变您的日常生活

智能生活新潮流&#xff1a;如何用ChatGPT提升你的工作效率 拥抱人工智能革命 在当今快节奏的世界中&#xff0c;寻找提高生产力的方法就像找到一张成功的金票。 但不要害怕&#xff0c;因为我有一些令人兴奋的消息要告诉你&#xff01; 进入 GPT 工具的世界&#xff0c;这是一…

vue3+ts项目 | axios 的测试 | 测试接口

在 App.vue 中&#xff0c;测试接口 // 测试接口import request from /utils/request;import { onMounted } from vue;onMounted(() > {request.get(/hosp/hospital/1/10).then((res) > {console.log("APP组件展示获取的数据",res);})}) 在request.ts中&…

深入探索位图技术:原理及应用

文章目录 一、引言二、位图&#xff08;Bitset&#xff09;基础知识1、位图的概念2、位图的表示3、位图操作 三、位图的应用场景1、数据查找与存储2、数据去重与排序 四、位图的实现 一、引言 位图&#xff0c;以其高效、简洁的特性在数据处理、存储和检索等多个领域发挥着举足…

JJJ:linux系统中第一个进程

以linux4.19内核linux系统中第一个进程。 执行shell指令 ps -ef 结果如下&#xff1a; xxxxxx-virtual-machine:~$ ps -ef UID PID PPID C STIME TTY TIME CMD root 1 0 0 20:55 ? 00:00:02 /sbin/init splash root …

Postgresql导出数据和结构后再去另外一个Postgresql数据库中导入失败

参考教程&#xff1a; postgresql 在导入建表sql时 遇到错误 &#xff1a;https://blog.csdn.net/weixin_37706944/article/details/132321731 是因为原表定义了自增字段&#xff0c;解决办法&#xff1a; 解决方法&#xff1a; 执行如下sql后再新建表&#xff0c;就可以了 DR…

【docker】nexus 本地 maven配置

1、这篇文章中说明了如何搭建私服 【docker】搭建Nexus私服-CSDN博客文章浏览阅读2次。4、点击登陆&#xff08;账号&#xff1a;admin 秘密&#xff1a;在容器内 /nexus-data/admin.password 文件中)注意我的端口号是 10002&#xff0c;注意你的端口号。7、设置maven-central…

【数据分析面试】1. 计算年度收入百分比(SQL)

题目 你需要为公司的营收来源生成一份年度报告。计算截止目前为止&#xff0c;在表格中记录的第一年和最后一年所创造的总收入百分比。将百分比四舍五入到两位小数。 示例&#xff1a; 输入&#xff1a; annual_payments 表 列名类型amountINTEGERcreated_atDATETIMEstatusV…

COSMIC 方法 - 需求评估 映射阶段

通用软件模型 原则 - COSMIC 通用软件模型 a) 软件块跨越边界与功能用户交互、并与边界内的持久存储介质进行交互。 b) 被度量软件块的 FUR 能够被映射到唯一的一组功能处理。 c) 每个功能处理由一系列子处理组成 d) 一个子处理可以是一个数据移动或者是一个数据运算。 e) 有四…

[flink 实时流基础] 转换算子

flink学习笔记 数据源读入数据之后&#xff0c;我们就可以使用各种转换算子&#xff0c;将一个或多个DataStream转换为新的DataStream。 文章目录 基本转换算子&#xff08;map/ filter/ flatMap&#xff09;聚合算子&#xff08;Aggregation&#xff09;按键分区&#xff08;…

【Spring MVC】快速学习使用Spring MVC的注解及三层架构

&#x1f493; 博客主页&#xff1a;从零开始的-CodeNinja之路 ⏩ 收录文章&#xff1a;【Spring MVC】快速学习使用Spring MVC的注解及三层架构 &#x1f389;欢迎大家点赞&#x1f44d;评论&#x1f4dd;收藏⭐文章 目录 Spring Web MVC一: 什么是Spring Web MVC&#xff1…

成绩管理系统|基于springboot成绩管理系统的设计与实现(附项目源码+论文)

基于springboot成绩管理系统的设计与实现 一、摘要 传统办法管理信息首先需要花费的时间比较多&#xff0c;其次数据出错率比较高&#xff0c;而且对错误的数据进行更改也比较困难&#xff0c;最后&#xff0c;检索数据费事费力。因此&#xff0c;在计算机上安装毕业设计成绩管…

全局自定义指令实现图片懒加载,vue2通过js和vueuse的useintersectionObserver实现

整体逻辑&#xff1a; 1.使用全局自定义指令创建图片懒加载指令 2.在全局自定义指令中获取图片距离顶部的高度和整个视口的高度 3.实现判断图片是否在视口内的逻辑 一、使用原生js在vue2中实现图片懒加载 1.创建dom元素,v-lazy为自定义指令&#xff0c;在自定义指令传入图片…

瑞吉外卖实战学习--8、人员编辑更新

人员编辑更新 前言1、进入编辑窗口需要先获取用户信息2、通过上篇文章的update的方法来改变数据3、测试效果 前言 1、进入编辑窗口需要先获取用户信息 通过注解PathVariable 来获取路径需要携带的id然后赋值到路径上&#xff0c;再通过id查询用户信息 /*** 通过id查询用户信…

Java毕业设计-基于springboot开发的招聘信息管理系统平台-毕业论文+答辩PPT(附源代码+演示视频)

文章目录 前言一、毕设成果演示&#xff08;源代码在文末&#xff09;二、毕设摘要展示1、开发说明2、需求分析3、系统功能结构 三、系统实现展示1、系统功能模块2、管理员功能模块3、企业后台管理模块4、用户后台管理模块 四、毕设内容和源代码获取总结 Java毕业设计-基于spri…

黄金涨是商品牛市的领先信号

自2022年11月以来&#xff0c;黄金价格持续上涨&#xff0c;目前已经突破历史新高&#xff0c;历史上黄金上涨&#xff0c;大多是商品全面牛市的领先信号。在2008年Q4、2019年也出现过&#xff0c;黄金比其他商品更强&#xff0c;但随后的2009年和2020年均是商品的全面牛市。同…

【前端】layui前端框架学习笔记

【前端目录贴】 参考视频:LayUI 参考笔记:https://blog.csdn.net/qq_61313896/category_12432291.html 1.介绍 官网&#xff1a;http://layui.apixx.net/index.html 国人16年开发的框架,拿来即用,门槛低 … 2. LayUi的安装及使用 Layui 是一套开源的 Web UI 组件库&#xff0…

【论文阅读】UniLog: Automatic Logging via LLM and In-Context Learning

注 由于其公司的保密政策&#xff0c;本文没有公开源代码&#xff0c;数据是公开的。 文章目录 摘要一、介绍二、背景和动机2.1、日志语句生成2.2、大语言模型2.3、上下文学习&#xff08;In-Context Learning&#xff0c;ICL) 三、UNILOG3.1、模型骨干3.2、提示策略3.2.1、提…

stable diffusion如何下载预处理器?

如何下载预处理器&#xff1f; 具体位置:SD文件>extensions>sd-webui-controlnet>annotator” 把整个文件夹复制到SD的文件夹里面 里面有一个“downloads”文件夹 把这些模型复制到“downloads”文件夹里

YOLOV5训练自己的数据集教程(万字整理,实现0-1)

文章目录 一、YOLOV5下载地址 二、版本及配置说明 三、初步测试 四、制作自己的数据集及转txt格式 1、数据集要求 2、下载labelme 3、安装依赖库 4、labelme操作 五、.json转txt、.xml转txt 六、修改配置文件 1、coco128.yaml->ddjc_parameter.yaml 2、yolov5x.…