【STM32嵌入式系统设计与开发】——13WWDG(窗口看门狗应用)

news2025/1/21 11:59:06

这里写目录标题

  • 一、任务描述
  • 二、任务实施
    • 1、WWDG工程文件夹创建
    • 2、函数编辑
      • (1)主函数编辑
      • (2)USART1初始化函数(usart1_init())
      • (3)USART数据发送函数( USART1_Send_Data())
      • (4)USART数据发送函数( USART1_IRQHandler())
      • (5)系统时间初始化函数( SystemTinerInit())
      • (6)等待计时函数( WaitTimerOut())
      • (7)系统时间定时器中断服务函数( TIM3_IRQHandler())
      • (8)获取系统计时时间函数( GetSystemTimer())
      • (9)外部中断4初始化函数( EXTIX_Init())
      • (10)外部中断4服务函数( EXTI4_IRQHandler())
      • (11)窗口看门狗初始化函数(IWDG_Init())
      • (12)喂窗口看门狗函数(WWDG_IRQHandler())
      • (13)窗口看门狗中断配置函数(WWDG_NVIC_Init())
      • (14)喂窗口看门狗函数(WWDG_IRQHandler())
    • 3、宏定义
      • 定时器宏定义
      • 中断宏定义
      • 窗口看门狗宏定义
    • 4、知识链接
      • (1)独立看门狗
      • (2)两种看门狗喂狗的区别
    • 5、工程测试


STM32资料包:
百度网盘下载链接:链接:https://pan.baidu.com/s/1mWx9Asaipk-2z9HY17wYXQ?pwd=8888
提取码:8888


一、任务描述

在这里插入图片描述

二、任务实施

观察电路图:
TXD(底板) ————————> PA10
RXD(底板) ————————> PA9
D1 (底板) ————————> PA0
D2(底板)————————> PA8
使用USB-AB型数据线,连接15核心板USB口,串口发送接收到的数据。在这里插入图片描述

1、WWDG工程文件夹创建

步骤1:复制工程模板“1_Template”重命名为“10_WWDG”。
在这里插入图片描述
步骤2:修改项目工程名,先删除projects文件夹内除了Template.uvprojx文件外的所有内容并修改为“WWDG.uvprojx”。并删除output/obj和output/lst中的所有文件。
在这里插入图片描述
步骤3:运行“WWDG.uvprojx”打开目标选项“Options for Target”中的“Output”输出文件,并修改可执行文件名称为“WWDG”点击“OK”保存设置。最后点击“Rebuild”编译该工程生成Usart文件。
请添加图片描述
步骤4:复制“2_SingleKey”中的"1_LED"和"SingleKey"文件复制到hardware中。
在这里插入图片描述
步骤5:在“system”中新建“wwdg”文件夹,并新建“wwdg.c”和“wwdg.h”文件。
在这里插入图片描述
步骤5:工程组文件中添加“led.c”和“led.h”文件。
在这里插入图片描述
步骤5:工程组文件中添加“iwdg.c”和“iwdg.h”文件。
请添加图片描述
步骤6:目标选项添加添加头文件路径。
请添加图片描述

2、函数编辑

(1)主函数编辑

该段代码是一个嵌入式系统的主程序入口,其中包括初始化各种外设(如滴答定时器、USART1、LED等),然后进入一个无限循环,不断交替地控制LED灯的闪烁。。
在这里插入图片描述

步骤1:端口初始化准备

	//函数初始化,端口准备
	delay_init();                         //启动滴答定时器
    usart1_init(9600);                    //USART1初始化
	LED_Init();                           //板载LED初始化
	ExpLEDInit();                         //开发板LED初始化
	SystemTinerInit(1000-1,7200-1);       //系统时间初始化 定时100ms
	LED = 0;  
	delay_ms(500);                        //让人看得到灭
    WWDG_Init(0X7F,0X5F,WWDG_Prescaler_8);//计数器值为7f,窗口寄存器为5f,分频数为8  

在这里插入图片描述

步骤2:实现一个简单的计时器,并在每秒打印一次计时信息。利用LED状态的改变来指示系统正在运行。

	printf("初始化成功!\r\n");            
	
	while(1)
	{			
        LED = 1;     
		delay_ms(300);
		LED = 0;
		delay_ms(300);
		LED = 1;     
		delay_ms(300);
		LED = 0;
		delay_ms(300);
		LED = 1;     
		delay_ms(300);
		LED = 0;
	}	

在这里插入图片描述

(2)USART1初始化函数(usart1_init())

配置了 PA9 为复用推挽输出,用于 USART1 的 TXD,并配置了 PA10 为浮空输入,用于 USART1 的 RXD。并配置了 USART1 的参数,包括波特率、数据位长度、停止位数、校验位、硬件流控制和工作模式。

/*********************************************************************
 @Function  : USART1初始化
 @Parameter : bound : 波特率 
 @Return    : N/A
**********************************************************************/   	
void usart1_init(uint32_t bound)
{
    GPIO_InitTypeDef GPIO_InitStructure;             										          // 定义 GPIO 初始化结构体
    USART_InitTypeDef USART_InitStructure;            										          // 定义 USART 初始化结构体
    NVIC_InitTypeDef NVIC_InitStructure;              										          // 定义 NVIC 初始化结构体

    /* 时钟使能:启用 USART1 和 GPIOA 的时钟 */
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE);

    /* 引脚复用配置 */  
    // 配置 PA9 为复用推挽输出,用于 USART1 的 TXD
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;   		                             // 设置 GPIO 端口
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;                                // 设置 GPIO 速度
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; 								 // 设置 GPIO 模式为复用推挽
    GPIO_Init(GPIOA, &GPIO_InitStructure);          							     // 初始化 GPIO

    // 配置 PA10 为浮空输入,用于 USART1 的 RXD
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;                                      // 设置 GPIO 端口
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;                           // 设置 GPIO 模式为浮空输入
    GPIO_Init(GPIOA, &GPIO_InitStructure);                                          // 初始化 GPIO

    /* NVIC 中断配置 */ 
    NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;                               // 设置中断通道为 USART1
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3;                       // 设置抢占优先级为3
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;                              // 设置子优先级为3
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;                                 // 使能中断通道
    NVIC_Init(&NVIC_InitStructure);                                                 // 初始化 NVIC

    /* USART1 配置 */ 
    USART_InitStructure.USART_BaudRate = bound;                                     // 设置波特率
    USART_InitStructure.USART_WordLength = USART_WordLength_8b;                     // 设置数据位长度为8位
    USART_InitStructure.USART_StopBits = USART_StopBits_1;                          // 设置停止位为1位
    USART_InitStructure.USART_Parity = USART_Parity_No;                             // 设置校验位为无校验
    USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; // 设置硬件流控制为无
    USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;                 // 设置工作模式为接收和发送
    USART_Init(USART1, &USART_InitStructure);                                       // 初始化 USART1

		/*中断配置*/
		USART_ITConfig(USART1,USART_IT_RXNE,ENABLE);                                //开接受中断 
		USART_ITConfig(USART1,USART_IT_IDLE,ENABLE);                                //开空闲中断
		USART_ITConfig(USART1,USART_IT_TXE,ENABLE);                                 //开发送中断	
		USART_Cmd(USART1, ENABLE);                                                  //启用USART1
		USART_DataTypeStr.Usart_Tc_State = SET;	                                    //置位发送允许标志	      
}

在这里插入图片描述

(3)USART数据发送函数( USART1_Send_Data())

初始化PD14端口,并为推挽输出。

/*********************************************************************
 @Function  : USART数据发送函数
 @Parameter : Data 	 :要发送的数据缓存.
							Lenth  :发送长度
 @Return    : 发送状态   1 :失败   0 :成功
**********************************************************************/
char USART1_Send_Data(char* Data,uint8_t Lenth) 
{
	uint8_t uNum = 0;
	if(USART_DataTypeStr.Usart_Tc_State == 1)                       //判断发送标志位是否置1
	{
		USART_DataTypeStr.Usart_Tc_State = 0;                       //将发送标志位清零,表示数据已经成功放入缓存,等待发送
		USART_DataTypeStr.Usart_Tx_Len = Lenth;                     //获取需要发送的数据的长度       
	  for(uNum = 0;uNum < USART_DataTypeStr.Usart_Tx_Len;uNum ++)   //将需要发送的数据放入发送缓存
	  {
		  USART_DataTypeStr.Usart_Tx_Buffer[uNum] = Data[uNum];
	  }
    USART_ITConfig(USART1,USART_IT_TXE,ENABLE);			            //数据放入缓存后打开发送中断,数据自动发送
	}
	return USART_DataTypeStr.Usart_Tc_State;                        //返回放数据的状态值,为1表示发送失败,为0表示发送成功了
}

在这里插入图片描述

(4)USART数据发送函数( USART1_IRQHandler())

/*********************************************************************
 @Function  : USART1中断服务函数
 @Parameter : N/A 
 @Return    : N/A
**********************************************************************/
void USART1_IRQHandler(void)                
{
	 uint8_t Clear = Clear;                                                                           // 定义清除标志的变量,并初始化为自身
	static uint8_t uNum = 0;                                                                          // 静态变量,用于循环计数
	 
  if(USART_GetITStatus(USART1,USART_IT_RXNE) != RESET)                                                // 判断读数据寄存器是否为非空
  {
    USART_ClearFlag(USART1, USART_IT_RXNE);                                                           // 清零读数据寄存器,其实硬件也可以自动清零
    USART_DataTypeStr.Usart_Rx_Buffer[USART_DataTypeStr.Usart_Rx_Num ++] = \
		(uint16_t)(USART1->DR & 0x01FF);                                                              // 将接收到的数据存入接收缓冲区
		(USART_DataTypeStr.Usart_Rx_Num) &= 0xFF;                                                     // 防止缓冲区溢出
  } 
	
	else if(USART_GetITStatus(USART1,USART_IT_IDLE) != RESET)   // 检测空闲
	{
	  Clear = USART1 -> SR;                                                                         // 读SR位
		Clear = USART1 -> DR;                                                                       // 读DR位,
	  USART_DataTypeStr.Usart_Rx_Len = USART_DataTypeStr.Usart_Rx_Num;                              // 获取数据长度
		for(uNum = 0; uNum < USART_DataTypeStr.Usart_Rx_Len; uNum ++)          
		{
				USART_DataTypeStr.Usart_Rx_Data[uNum] = USART_DataTypeStr.Usart_Rx_Buffer[uNum];      // 将接收到的数据复制到接收数据缓冲区
		}
		USART_DataTypeStr.Usart_Rx_Num = 0;                                                           // 清空接收计数器
		USART_DataTypeStr.Usart_Rc_State = 1;                                                         // 数据读取标志位置1,读取串口数据
	}
	
	if(USART_GetITStatus(USART1,USART_IT_TXE) != RESET)                                                  // 判断发送寄存器是否为非空
  {
		USART1->DR = \
		((USART_DataTypeStr.Usart_Tx_Buffer[USART_DataTypeStr.Usart_Tx_Num ++]) & (uint16_t)0x01FF);    // 发送数据
		(USART_DataTypeStr.Usart_Tx_Num) &= 0xFF;                                                       // 防止缓冲区溢出
    if(USART_DataTypeStr.Usart_Tx_Num >= USART_DataTypeStr.Usart_Tx_Len)
    {   
			USART_ITConfig(USART1,USART_IT_TXE,DISABLE);                                                // 发送完数据,关闭发送中断
			USART_DataTypeStr.Usart_Tx_Num = 0;                                                         // 清空发送计数器
			USART_DataTypeStr.Usart_Tc_State = 1;                                                       // 发送标志置1,可以继续发送数据了
    } 		
	}
	
}

在这里插入图片描述

(5)系统时间初始化函数( SystemTinerInit())

Tout=((arr+1)*(psc+1))/Ft us,Ft=定时器工作频率,单位:Mhz;初始化TIM3定时器,配置定时器的周期值、预分频值、计数模式等参数,并使能定时器及其中断

/*********************************************************************
 @Function  : 系统时间初始化
 @Parameter : arr:自动重装值。
							psc:时钟预分频数
 @Return    : N/A
 @Read 			:Tout=((arr+1)*(psc+1))/Ft us,Ft=定时器工作频率,单位:Mhz
**********************************************************************/
void SystemTinerInit(uint16_t arr, uint16_t psc)
{
    TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;               // 定义TIM基本参数结构体

    NVIC_InitTypeDef NVIC_InitStructure;                         // 定义中断优先级配置结构体

    /* 时钟使能 */
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);         // 使能TIM3时钟

    /* TIM配置 */
    TIM_TimeBaseStructure.TIM_Period = arr;                      // 设置定时器的周期值
    TIM_TimeBaseStructure.TIM_Prescaler = psc;                   // 设置定时器的预分频值
    TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;      // 设置时钟分频因子为1
    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  // 设置计数模式为向上计数
    TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);              // 初始化TIM3定时器

    /* 允许中断 */
    TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);                   // 使能TIM3更新(溢出)中断

    /* NVIC 配置 */
    NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;              // 设置TIM3中断通道
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;    // 设置TIM3中断的抢占优先级为0
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;           // 设置TIM3中断的子优先级为3
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;              // 使能TIM3中断通道
    NVIC_Init(&NVIC_InitStructure);                              // 初始化NVIC

    /* 使能TIMx */
    TIM_Cmd(TIM3, ENABLE);                                       // 使能TIM3定时器
}

(6)等待计时函数( WaitTimerOut())

定时器超时检测功能,根据传入的参数 gTimer 和系统时钟计数器,判断定时器是否超时,并返回相应的状态。

/*********************************************************************
 @Function  : 等待计时
 @Parameter : gTimer :等待时间,100ms一个单位
 @Return    : 1表示超时,0表示未超时
**********************************************************************/
uint8_t WaitTimerOut(uint32_t gTimer)
{	
	uint32_t GTr = 0;                         // 定义变量用于存储定时器剩余时间

	
	if(gTimer==0) return 1;                   // 如果等待时间为0,则直接返回1,表示不等待

	
	GTr = SystemTimer % gTimer;	              // 计算定时器剩余时间

	
	if((GTr==0) && (!Rti) && (Gti != gTimer)) // 如果定时器剩余时间为0,且上次未检测到超时,并且当前定时器时间不等于上次记录的时间
	{ 
		Rti=1;                                // 设置标志表示检测到定时器超时
		Gti = gTimer;                         // 更新记录的定时器时间
		return 1;                             // 返回1表示超时
	}
	
	else if((GTr!=0) && (Rti))                // 如果定时器剩余时间不为0,且上次检测到超时,则将标志置为0
		Rti=0;


	if(!GetTimer) GetTimer = SystemTimer;	  // 如果记录定时器开始时间为0,则将其设置为当前系统时间

	
	if(SystemTimer - GetTimer == gTimer)      // 如果当前系统时间减去记录的定时器开始时间等于设定的等待时间,则返回1表示超时
	{ 
		GetTimer = 0;                         // 将记录的定时器开始时间清零,准备下一次记录
		return 1;                             // 返回1表示超时
	}

	return 0;                                 // 返回0表示未超时
}

在这里插入图片描述

(7)系统时间定时器中断服务函数( TIM3_IRQHandler())

实现TIM3定时器的中断服务程序,每次定时器溢出时,增加 SystemTimer 计数值,并在计数到60时归零,同时清除中断标志位。

/*********************************************************************
 @Function  : 系统时间定时器中断服务函数
 @Parameter : N/A
 @Return    : N/A
**********************************************************************/
void TIM3_IRQHandler(void)   
{	
  // 检查定时器更新中断是否触发
	if(TIM_GetITStatus(TIM3, TIM_IT_Update) == SET) // 溢出中断
	{
		SystemTimer++;                                // 系统时间计数器加1

		if(SystemTimer == 60)	                        // 如果系统时间计数器达到60,则重置为0,并且清零记录的定时器开始时间
		{	
		    SystemTimer = 0;
			GetTimer = 0;
		}
	}
  // 清除定时器更新中断标志位
	TIM_ClearITPendingBit(TIM3, TIM_IT_Update);     // 清除中断标志位
}

在这里插入图片描述

(8)获取系统计时时间函数( GetSystemTimer())

/*********************************************************************
 @Function  : 获取系统计时时间
 @Parameter : N/A
 @Return    : N/A
**********************************************************************/
uint32_t GetSystemTimer(void)
{
   return SystemTimer;
}

在这里插入图片描述

(9)外部中断4初始化函数( EXTIX_Init())

/*********************************************************************
 @Function  : 外部中断4初始化
 @Parameter : N/A
 @Return    : N/A
**********************************************************************/
void EXTIX_Init(void)
{
 	EXTI_InitTypeDef EXTI_InitStructure;                      // 定义外部中断配置结构体
 	NVIC_InitTypeDef NVIC_InitStructure;                      // 定义中断控制器配置结构体
  /*时钟使能*/
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);	      // 使能 AFIO 时钟,用于配置外部中断的映射
  /*中断线配置*/   
  GPIO_EXTILineConfig(GPIO_PortSourceGPIOC, GPIO_PinSource4); // 配置外部中断线,将 PC4 映射到外部中断4
  EXTI_InitStructure.EXTI_Line = EXTI_Line4;	              // 设置外部中断线为 EXTI4
  EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;	      // 设置外部中断模式为中断模式
  EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;     // 设置触发方式为下降沿触发
  EXTI_InitStructure.EXTI_LineCmd = ENABLE;                   // 使能外部中断线
  EXTI_Init(&EXTI_InitStructure);	 	                      // 初始化外部中断配置
	/*NVIC配置*/
  NVIC_InitStructure.NVIC_IRQChannel = EXTI4_IRQn;	          // 设置中断向量为外部中断4
  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x02;// 设置抢占优先级为2
  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x03;       // 设置子优先级为3
  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;	          // 使能外部中断4
  NVIC_Init(&NVIC_InitStructure);                             // 初始化中断控制器配置
	/*关闭蜂鸣器*/
	beep = 0;                                                 // 初始化蜂鸣器状态为关闭
}

(10)外部中断4服务函数( EXTI4_IRQHandler())

/*********************************************************************
 @Function  : 外部中断4服务程序
 @Parameter : N/A
 @Return    : N/A
**********************************************************************/
void EXTI4_IRQHandler(void)
{
	delay_ms(10);//消抖
	if(DK1==0)				 
		beep =!beep;	
	EXTI_ClearITPendingBit(EXTI_Line4); //清除LINE4上的中断标志位  
}

在这里插入图片描述

(11)窗口看门狗初始化函数(IWDG_Init())

/*********************************************************************
 @Function  : 初始化窗口看门狗 	                                      
 @Parameter : tr   : T[6:0],计数器值 
							wr   : W[6:0],窗口值 
							fprer: 分频系数(WDGTB),仅最低2位有效
 @Return    : N/A    
 @Read      : Fwwdg=PCLK1/(4096*2^fprer).
**********************************************************************/
void WWDG_Init(uint8_t tr,uint8_t wr,uint32_t fprer)
{ 
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_WWDG, ENABLE);  //WWDG时钟使能

	WWDG_CNT=tr&WWDG_CNT;                                //初始化WWDG_CNT.   
	WWDG_SetPrescaler(fprer);                            //设置IWDG预分频值

	WWDG_SetWindowValue(wr);                             //设置窗口值

	WWDG_Enable(WWDG_CNT);	                             //使能看门狗 ,	设置 counter .                  

	WWDG_ClearFlag();                                    //清除提前唤醒中断标志位 

	WWDG_NVIC_Init();                                   //初始化窗口看门狗 NVIC

	WWDG_EnableIT();                                   //开启窗口看门狗中断
} 

在这里插入图片描述

(12)喂窗口看门狗函数(WWDG_IRQHandler())

/*********************************************************************
 @Function  : 重设置WWDG计数器的值 	
 @Parameter : cnt : 计数器值 
 @Return    : N/A
**********************************************************************/
void WWDG_Set_Counter(uint8_t cnt)
{
    WWDG_Enable(cnt);                                  //使能看门狗 ,	设置 counter .	 
}

在这里插入图片描述

(13)窗口看门狗中断配置函数(WWDG_NVIC_Init())

/*********************************************************************
 @Function  : 窗口看门狗中断配置	
 @Parameter : N/A
 @Return    : N/A
**********************************************************************/
void WWDG_NVIC_Init(void)
{

    NVIC_InitTypeDef NVIC_InitStructure;                        // 定义 NVIC_InitTypeDef 结构体变量 

    NVIC_InitStructure.NVIC_IRQChannel = WWDG_IRQn;             // WWDG中断

    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;   // 抢占2,子优先级3,组2

    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;          // 抢占2,子优先级3,组2

    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;             // 设置 NVIC_InitTypeDef 结构体变量

    NVIC_Init(&NVIC_InitStructure);                             //初始化 NVIC
}


在这里插入图片描述

(14)喂窗口看门狗函数(WWDG_IRQHandler())

/*********************************************************************
 @Function  : 喂窗口看门狗 	
 @Parameter : N/A
 @Return    : N/A
**********************************************************************/
void WWDG_IRQHandler(void)
{

    WWDG_SetCounter(WWDG_CNT);	     //当禁掉此句后,窗口看门狗将产生复位
  
	WWDG_ClearFlag();	            //清除提前唤醒中断标志位
  
	LED1=!LED1;		                //LED状态翻转
}

在这里插入图片描述

3、宏定义

步骤1:主函数添加所需的头文件,主源文件部分报错消失

#include "system_config.h"
#include "stm32f10x_gpio.h"
#include "stm32f10x_wwdg.h"

//头文件包含
/*************SYSTEM*****************/
#include ".\wwdg\wwdg.h"

/***********Hardweare***************/
#include "led.h"

在这里插入图片描述

步骤2:添加中断源文件所需的头文件,与定义WWDG计数器变量

#include "stm32f10x_wwdg.h"
#include "stm32f10x_rcc.h"
#include "misc.h"
#include ".\wwdg\wwdg.h"
#include "led.h"


//保存WWDG计数器的设置值,默认为最大. 
uint8_t WWDG_CNT=0x7f; 

在这里插入图片描述

步骤3:添加串口通信宏定义

#define USART_RX_LEN  200               // 接收缓冲区最大长度
#define USART_TX_LEN  200               // 发送缓冲区最大长度
#define UART_NUM      10                // 串口结构体最大对象数量

在这里插入图片描述
步骤4:添加函数声明

void usart1_init(uint32_t bound);
extern USART_DataTypeDef USART_DataTypeStr; 
char USART1_Send_Data(char* Data,uint8_t Lenth);

在这里插入图片描述
步骤5:添加数据类型和宏的头文件

//定义串口数据结构体
typedef struct USART_DataType 
{
    uint8_t Usart_Rx_Len;          // 接收缓冲区长度
    uint8_t Usart_Tx_Len;          // 发送缓冲区长度
    uint8_t Usart_Rx_Num;          // 接收数据计数
    uint8_t Usart_Tx_Num;          // 发送数据计数
    uint8_t Usart_Rc_State;        // 接收状态标志位
    uint8_t Usart_Tc_State;        // 发送状态标志位
    char Usart_Rx_Buffer[USART_RX_LEN]; // 接收缓冲区
    char Usart_Tx_Buffer[USART_TX_LEN]; // 发送缓冲区
    char Usart_Rx_Data[USART_RX_LEN];   // 接收数据
    char Usart_Tx_Data[USART_TX_LEN];   // 发送数据
} USART_DataTypeDef;

在这里插入图片描述
步骤6:定义一个串口数组变量

USART_DataTypeDef USART_DataTypeStr={0};

在这里插入图片描述

定时器宏定义

步骤1:创建一个宏定义保护

#ifndef __TIMER_H
#define __TIMER_H

#endif

在这里插入图片描述

步骤2:添加函数声明

void SystemTinerInit(uint16_t arr,uint16_t psc);//系统时间初始化函数
uint32_t GetSystemTimer(void);                  //获取系统计时时间函数
uint8_t WaitTimerOut(uint32_t gTimer);          //等待计时函数

在这里插入图片描述

步骤3:添加数据类型和宏的头文件

#include <stdint.h> 

在这里插入图片描述

中断宏定义

步骤1:创建一个宏定义保护

#ifndef __TIMER_H
#define __TIMER_H

#endif

在这里插入图片描述
步骤2:添加函数声明

void EXTIX_Init(void);	

在这里插入图片描述
步骤3:添加数据类型和宏的头文件

#include <stdint.h> 

在这里插入图片描述

窗口看门狗宏定义

步骤1:创建一个宏定义保护

#ifndef _WWDG_H
#define _WWDG_H



#endif

在这里插入图片描述

步骤2:添加函数声明

void WWDG_Init(uint8_t tr,uint8_t wr,uint32_t fprer);
void WWDG_Set_Counter(uint8_t cnt);       
void WWDG_NVIC_Init(void);

在这里插入图片描述

步骤3:添加数据类型和宏的头文件

#include <stdint.h> 

在这里插入图片描述

4、知识链接

(1)独立看门狗

在这里插入图片描述
独立看门狗(IWDG)监控整个系统的运行状态,而窗口看门狗(WWDG)则监控特定任务或代码段的执行情况。

(2)两种看门狗喂狗的区别

在这里插入图片描述

独立看门狗(IWDG)通常通过定时器产生重置信号,需要定期喂狗以防止系统被认为出现故障;而窗口看门狗(WWDG)则在一个可调整的时间窗口内进行监控,需要在该窗口内喂狗,否则系统会被认为出现故障。

5、工程测试

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1556811.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

访学博后须知|携带手机等电子产品入境美国注意事项

美国对携带手机等电子产品入境有着严格的规定&#xff0c;因此知识人网小编提醒拟出国做访问学者、博士后或联合培养的博士生了解以下注意事项&#xff0c;尽量减少不必要的麻烦。 随着互联网的普及&#xff0c;手机等电子产品在人民生活中占有不可或缺的地位。因为研究和工作需…

LInux: fork()究竟是如何工作的?为何一个变量能够接受两个返回值?

LInux: fork函数究竟是如何工作的&#xff1f;为何一个变量能够接受两个返回值&#xff1f; 前言一、fork()用法二 、fork()应用实例展示三、fork()工作原理3.1 为什么要创建子进程&#xff1f;3.2 fork()究竟干了些什么&#xff1f;3.3 fork为什么会存在两个返回值&#xff1f…

opengl草稿复习,承上启下(一)

目录 1、链接文件夹中的cpp 2、链接资源到输出目录 3、多编译目标 4、cmakelist添加库 4、添加glfw和glad 5、glfw运行 6、NDC、VBO、VAO 7、渐变三角形 8、渲染两个三角形 9、渲染两个三角形&#xff0c;同时基于原来颜色进行渐变 10、三角形渲染模块化 11、纹理渲…

深度学习中的模型蒸馏技术:实现流程、作用及实践案例

在深度学习领域&#xff0c;模型压缩与部署是一项重要的研究课题&#xff0c;而模型蒸馏便是其中一种有效的方法。 模型蒸馏&#xff08;Model Distillation&#xff09;最初由Hinton等人在2015年提出&#xff0c;其核心思想是通过知识迁移的方式&#xff0c;将一个复杂的大模型…

适合新手小白的wordpress详细安装教程

1、下载程序 到wordpress官方网站下载wordpress程序&#xff0c;官方下载地址&#xff1a;Download | WordPress.org China 简体中文。 下载最新版的wordpress程序 https://cn.wordpress.org/latest-zh_CN.zip 2、上传程序 上传程序前先确认主机是否符合安装的环境要求&…

javaWeb项目-学生考勤管理系统功能介绍

项目关键技术 开发工具&#xff1a;IDEA 、Eclipse 编程语言: Java 数据库: MySQL5.7 框架&#xff1a;ssm、Springboot 前端&#xff1a;Vue、ElementUI 关键技术&#xff1a;springboot、SSM、vue、MYSQL、MAVEN 数据库工具&#xff1a;Navicat、SQLyog 1、JAVA技术 JavaSc…

PS从入门到精通视频各类教程整理全集,包含素材、作业等(3)

PS从入门到精通视频各类教程整理全集&#xff0c;包含素材、作业等 最新PS以及插件合集&#xff0c;可在我以往文章中找到 由于阿里云盘有分享次受限制和文件大小限制&#xff0c;今天先分享到这里&#xff0c;后续持续更新 中级教程 https://www.alipan.com/s/unii5YxtM8B 提…

【JavaEE初阶系列】——多线程案例三——定时器

目录 &#x1f6a9;定时器是什么 &#x1f6a9;标准库中的定时器 &#x1f6a9;自定义定时器 &#x1f388;构造Task类 &#x1f4dd;相对时间和绝对时间 &#x1f388;构造MyTime类 &#x1f4dd;队列空和队列不为空 &#x1f4dd;wait(带参)解决消耗资源问题 &#…

方案研发公司服务的特点

一、服务特点&#xff1a; 1、有协助厂商在产品开发上解决问题的实践经验。 2、与国内半导体商合作&#xff0c;专营应用消费性IC&#xff0c;在供货上能以较有效率方式出货&#xff0c; 配合客户之需求。 3、长期从事专业的设计工作&#xff0c;能以较有效率方式、较专业的…

安达发|APS计划排产系统帮助纺织业实现企业数字化管理

APS&#xff08;高级计划排产系统&#xff09;是一种基于供应链管理和约束理论的计划排产工具&#xff0c;它通过模拟和优化企业的生产、物流等运作过程&#xff0c;帮助企业实现精细化管理。在纺织业中&#xff0c;APS的应用可以极大地推动企业数字化管理的进程&#xff0c;具…

【ROS 笔记1】Topic message通俗理解

前言: topic 能够将所有的独立的模块, 进行有序的交流,链接。 可以想象, roscore, 假设是一个铁路系统的总的开关,当打开总的开关(run roscore), 铁路路就可以畅通起来, 铁路畅通后, 如何进行北京站(机器人recognition)与上海站(机器人抓取)的交流。 那么我们可以从…

love 2d Lua 俄罗斯方块超详细教程

源码已经更新在CSDN的码库里&#xff1a; git clone https://gitcode.com/funsion/love2d-game.git 一直在找Lua 能快速便捷实现图形界面的软件&#xff0c;找了一堆&#xff0c;终于发现love2d是小而美的原生lua图形界面实现的方式。 并参考相关教程做了一个更详细的&#x…

第十四章 MySQL

一、MySQL 1.1 MySql 体系结构 MySQL 架构总共四层&#xff0c;在上图中以虚线作为划分。 1. 最上层的服务并不是 MySQL 独有的&#xff0c;大多数给予网络的客户端/服务器的工具或者服务都有类似的架构。比如&#xff1a;连接处理、授权认证、安全等。 2. 第二层的架构包括…

【2024系统架构设计】案例分析- 2 系统开发基础

目录 一 基础知识 二 真题 一 基础知识 1 结构化的需求分析 结构化特点:自顶向下,逐步分解,面向数据。 三大模型:

仓库规划(plan)

明天就要考试了&#xff0c;但是我正处于一点都不想学的状态 高考前我也是这样的 逆天 代码如下&#xff1a; #include<vector> #include<cstdio> using namespace std; int n, m; struct Node{int id;vector<int> d;bool operator<(const Node &t…

算法题2两数相加

给你两个 非空 的链表&#xff0c;表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的&#xff0c;并且每个节点只能存储 一位 数字。 请你将两个数相加&#xff0c;并以相同形式返回一个表示和的链表。你可以假设除了数字 0 之外&#xff0c;这两个数都不会以 0 开…

动态规划之方格取数

方格取数 动态规划&#xff0c;数字三角形模型 题目链接 https://www.luogu.com.cn/problem/P1004 题目描述 解法一 O ( n 4 ) O(n^4) O(n4) #include<bits/stdc.h> using namespace std; int n, i, j, l, k, x, y, s; int d[55][55], f[55][55][55][55]; int main()…

等保测评-Oracle数据库

安全计算环境 身份鉴别 a)应对登录的用户进行身份标识和鉴别&#xff0c;身份标识具有唯一性&#xff0c;身份鉴别信息具有复杂度要求并定期更换 select limit from dba_profiles where profileDEFAULTand resource_namePASSWORD_VERIFY_FUNCTION; //查看密码复杂度是否开启…

web基础07-Vue

目录 一、Vue 1.概述 2.MVC与MVVM 3.快速入门 4.Vue工程的创建 &#xff08;1&#xff09;基于vue-cli &#xff08;2&#xff09;基于Vite&#xff08;推荐&#xff09; 5.Vue3核心语法 6.setup &#xff08;1&#xff09;概述 &#xff08;2&#xff09;返回值方式…

【测试工具】JMeter接口测试的简单使用

事先声明&#xff1a;博主的JMeter是3.3版本的&#xff0c;可能和最新版本的操作有些许差别 测试前的准备工作 1、先添加一个线程组&#xff1a;右击“测试计划”&#xff0c;点击“添加”—》“Threads(Users)”—》“线程组” 2、再添加一个HTTP请求&#xff0c;右击“线程…