Apache Hive的基本使用语法

news2024/12/24 21:13:18

一、数据库操作

  • 创建数据库
create database if not exists myhive;
  • 查看数据库
use  myhive;
desc  database  myhive;

在这里插入图片描述

  • 创建数据库并指定hdfs存储
create database myhive2 location '/myhive2';
  • 删除空数据库(如果有表会报错)
drop  database  myhive;
  • 强制删除数据库,包含数据库下的表一起删除
drop  database  myhive cascade;
  • 数据库和HDFS的关系
  1. Hive的库在HDFS上就是一个以.db结尾的目录
  2. 默认存储在:/user/hive/warehouse内
  3. 可以通过LOCATION关键字在创建的时候指定存储目录
  • Hive中可以创建的表有好几种类型, 分别是:
  1. 内部表
  2. 外部表
  3. 分区表
  4. 分桶表

二、Hive SQL语法

1、表操作

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name [(col_name data_type [COMMENT col_comment], ...)] [COMMENT table_comment] [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] 分区 [CLUSTERED BY (col_name, col_name, ...) 分桶 [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS] [ROW FORMAT DELIMITED | SERDE serde_name WITH SERDEPROPERTIES(property_name=property_value,..)] [STORED AS file_format] [LOCATION hdfs_path]

[] 中括号的语法表示可选。
| 表示使用的时候,左右语法二选一。
建表语句中的语法顺序要和语法树中顺序保持一致。

字段简单说明

  • CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXISTS 选项 来忽略这个异常。
  • EXTERNAL 外部表
  • COMMENT: 为表和列添加注释。
  • PARTITIONED BY 创建分区表
  • CLUSTERED BY 创建分桶表
  • SORTED BY 排序不常用
  • ROW FORMAT DELIMITED 使用默认序列化LazySimpleSerDe 进行指定分隔符
  • SERDE 使用其他序列化类 读取文件
  • STORED AS 指定文件存储类型
  • LOCATION 指定表在HDFS上的存储位置。
  • LIKE 允许用户复制现有的表结构,但是不复制数据
  • 数据类型
    在这里插入图片描述
  • 创建表
CREATE TABLE test(id INT, name STRING, gender STRING);
  • 删除表
DROP TABLE test;

2、内部表操作

  • 默认创建的就是内部表,如下举例:
create database if not exists myhive;
use myhive;
create table if not exists stu2(id int,name string);
insert into stu2 values (1,"zhangsan"), (2, "lisi");
select * from stu2;
  • 在HDFS上,查看表的数据存储文件
    在这里插入图片描述

3、外部表操作

 # 创建外部表
create external table test_ext(id int, name string) row format delimited fields terminated by '\t' location '/tmp/test_ext';
# 可以看到,目录/tmp/test_ext被创建
select * from test_ext #空结果,无数据
# 上传数据: 
hadoop fs -put test_external.txt /tmp/test_ext/ 
#现在可以看数据结果
select * from test_ext 
# 删除外部表(但是在HDFS中,数据文件依旧保留)
drop table test_ext;
  • 内外部表转换(EXTERNAL=TRUE 外或FALSE 内,注意字母大写)
alter table stu set tblproperties('EXTERNAL'='TRUE');

4、数据加载和导出

  • 先建表
CREATE TABLE myhive.test_load(
  dt string comment '时间(时分秒)', 
  user_id string comment '用户ID', 
  word string comment '搜索词',
  url string comment '用户访问网址'
) comment '搜索引擎日志表' ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
  • 数据加载方式一:基于HDFS进行load加载数据(不保留原始文件)
load data local inpath '/home/hadoop/search_log.txt' into table myhive.test_load;

search_log.txt文件内容如下:
在这里插入图片描述

  • 数据加载方式二:将SELECT查询语句的结果插入到其它表中,被SELECT查询的表可以是内部表或外部表(保留原始文件)
INSERT INTO TABLE tbl1 SELECT * FROM tbl2;
INSERT OVERWRITE TABLE tbl1 SELECT * FROM tbl2;
  • 将查询的结果导出到本地 - 使用默认列分隔符
insert overwrite local directory '/home/hadoop/export1' select * from test_load ;
  • 将查询的结果导出到本地 - 指定列分隔符
insert overwrite local directory '/home/hadoop/export2' row format delimited fields terminated by '\t' select * from test_load;
  • 将查询的结果导出到HDFS上(不带local关键字)
insert overwrite directory '/tmp/export' row format delimited fields terminated by '\t' select * from test_load;
  • hive表数据导出
bin/hive -e "select * from myhive.test_load;" > /home/hadoop/export3/export4.txt

bin/hive -f export.sql > /home/hadoop/export4/export4.txt

5、分区表

  • 在大数据中,最常用的一种思想就是分治,我们可以把大的文件切割划分成一个个的小的文件,这样每次操作一个小的文件就会很容易了
    同样的道理,在hive当中也是支持这种思想的,就是我们可以把大的数据,按照每天,或者每小时进行切分成一个个的小的文件,这样去操作小的文件就会容易得多了。
    在这里插入图片描述
  • 基本语法
    create table tablename(...) partitioned by (分区列 列类型, ......) row format delimited fields terminated by '';
  • 创建分区表
create table score(s_id string, c_id string, s_score int) partition by (month string) row format delimited fields terminated by '\t';
  • 创建多个分区表
create table score(s_id string, c_id string, s_score int) partition by (year string,month string,day string) row format delimited fields terminated by '\t';
  • 加载数据到分区表中
load data local inpath '/export/server/hivedata/score.txt' into table score partition(month='202403');
  • 加载数据到多分区表中
load data local inpath '/export/server/hivedata/score.txt' into table score partition(year='2024',month='03',day='27');
  • 查看分区表
show partitions score;
  • 添加一个分区
alter table score add partition(month='202403');
  • 同时添加多个分区
alter table score add partition(month='202403') partition(month='202402');
  • 删除分区
alter table score drop partition(month='202403');

6、分桶表

  • 开启分桶的自动优化(自动匹配reduce task数量和桶数量一致)
set hive.enforce.bucketing=true;
  • 创建分桶表
create table course (c_id string,c_name string,t_id string) clustered by(c_id) into 3 buckets row format delimited fields terminated by '\t';
  • 桶表的数据加载,由于桶表的数据加载通过load data无法执行,只能通过insert select.
    所以,比较好的方式是:
  1. 创建一个临时表(外部表或内部表均可),通过load data加载数据进入表
  2. 然后通过insert select 从临时表向桶表插入数据
# 创建普通i表
create table course_common(c_id string, c_name string, t_id string) row format delimited fields terminated by '\t';
# 普通表中加载数据
load data local inpath '/export/server/hivedata/course.txt' into table course_common;
# 通过insert overwrite给桶表加载数据
insert overwrite table course select * from course_common cluster by(c_id);
  • 为什么不可以用load data,必须用insert select插入数据:
  1. 问题就在于:如何将数据分成三份,划分的规则是什么?
  2. 数据的三份划分基于分桶列的值进行hash取模来决定
  3. 由于load data不会触发MapReduce,也就是没有计算过程(无法执行Hash算法),只是简单的移动数据而已
    所以无法用于分桶表数据插入。
  • Hash取模
  1. Hash算法是一种数据加密算法,其原理我们不去详细讨论,我们只需要知道其主要特征:
  • 同样的值被Hash加密后的结果是一致的
    比如字符串“hadoop”被Hash后的结果是12345(仅作为示意),那么无论计算多少次,字符串“hadoop”的结果都会是12345。
    比如字符串“bigdata”被Hash后的结果是56789(仅作为示意),那么无论计算多少次,字符串“bigdata”的结果都会是56789。
  1. 基于如上特征,在辅以有3个分桶文件的基础上,将Hash的结果基于3取模(除以3 取余数)
    那么,可以得到如下结果:
  • 无论什么数据,得到的取模结果均是:0、1、2 其中一个
  • 同样的数据得到的结果一致,如hadoop hash取模结果是1,无论计算多少次,字符串hadoop的取模结果都是1

至此,分享结束!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1549786.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【二叉树】Leetcode 102. 二叉树的层序遍历【中等】

二叉树的层序遍历 给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点) 示例1: 输入:root [3,9,20,null,null,15,7] 输出:[[3],[9,20],[15,7]] 解题思路…

LabVIEW无人机大气数据智能测试系统

LabVIEW无人机大气数据智能测试系统 随着无人机技术的迅速发展,大气数据计算机作为重要的机载设备,在确保飞行安全性方面发挥着重要作用。设计了一套基于LabVIEW的无人机大气数据智能测试系统,通过高效、稳定的性能测试,及时发现…

Chakra UI:重塑React组件开发的未来

随着前端开发技术的不断演进,React已经成为了一个不可或缺的开源JavaScript库,用于构建用户界面。然而,虽然React提供了构建用户界面的强大工具,但在组件的可访问性、可重复使用性和可组合性方面仍存在挑战。Chakra UI正是一个为解…

数据处理库Pandas的数据结构Series

Series是一种一维数据结构,每个元素都带有一个索引,与一维数组的含义相似,其中索引可以为数字或字符串,如图3-1所示。 Series 对象包含两个主要的属性:index 和 values,分别为上例中的左右两列。因为传给构…

春秋云境CVE-2022-23880

简介 taoCMS v3.0.2 文件管理处存在任意文件上传漏洞,攻击者可执行任意代码 正文 首先进入靶场,我们发现在首页底部有个管理界面,那么就直接点进去进入后台。 找到后台 找到后台,尝试弱口令,发现不成功&#xff0c…

Zookeeper的系统架构

先看一张图: ZooKeeper 的架构图中我们需要了解和掌握的主要有: 1: ZooKeeper分为服务器端(Server) 和客户端(Client),客户端可以连接到整个ZooKeeper服务的任意服务器上&#xff…

Jenkins安装配置部署

Jenkins安装配置部署 一、什么是CI/CD 1.CI(Continuous integration) 中文意思是持续集成)是一种软件开发时间。持续集成强调开发人员提交了 新代码之后,立刻进行构建、(单元)测试。根据测试结果,我们可以确定新代码…

第3章:角色提示,强化Chatgpt输出新篇章!

角色提示技术 角色提示技术(role prompting technique),是通过模型扮演特定角色来产出文本的一种方法。用户为模型设定一个明确的角色,它就能更精准地生成符合特定上下文或听众需求的内容。 比如,想生成客户服务的回复…

未来制造:机器人行业新质生产力提升策略

机器人行业新质生产力提升咨询方案 一、机器人行业目前发展现状及特点: 创新活跃、应用广泛、成长性强。 二、机器人企业发展新质生产力面临的痛点: 1、高端人才匮乏 2、核心技术受限 3、竞争日益国际化 4、成本控制挑战 5、用户体验提升需求 三…

Flink on Kubernetes (flink-operator) 部署Flink

flink on k8s 官网 https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-release-1.1/docs/try-flink-kubernetes-operator/quick-start/ 我的部署脚本和官网不一样,有些地方官网不够详细 部署k8s集群 注意,按照默认配置至少有两台wo…

【C++】STL 标准模板库

前言 在前一章种我们介绍了C中的模板的使用,这是一种泛型编程,模板的使用能让我们减少大量的相似代码,减少我们的代码量与工作量,写出更加高效简洁的代码,模板如此好用,但还是要我们先出写一个泛型类或函数…

前端web移动端学习day04

移动 Web 第四天 01-vw适配方案 vw和vh基本使用 vw和vh是相对单位,相对视口尺寸计算结果,相对于屏幕的逻辑参数 vw:viewport width(1vw 1/100视口宽度 )vh:lviewport height ( 1vh 1/100视口高度 ) …

Stardew Valley(到达同一高度最少操作数)

本题链接:登录—专业IT笔试面试备考平台_牛客网 题目: 样例: 输入 5 1 2 3 1 2 输出 2 思路: 根据题意,要求选取一段区间 1 ,使得序列单调递增。求最少操作数。 我们选取区间 1 是为了不超过前面的最大…

软考数据库

目录 分值分布1. 事务管理1.1 事物的基本概念1.2 数据库的并发控制1.2.1 事务调度概念1.2.2 并发操作带来的问题1.2.3 并发控制技术1.2.4 隔离级别: 1.3 数据库的备份和恢复1.3.1 故障种类1.3.2 备份方法1.3.3 日志文件1.3.4 恢复 SQL语言 分值分布 1. 事务管理 1.…

华为CLI实验-配置旁路检测时的安全策略

CLI举例:配置旁路检测时的安全策略 举例说明当FW作为旁路检测设备时,如何配置安全策略。 组网需求 如图1所示,企业内网通过路由器Router连接到Internet。FW作为旁路检测设备,对通过Router的流量进行内容安全检测。 图1 旁路检测…

【搜索引擎2】实现API方式调用ElasticSearch8接口

1、理解ElasticSearch各名词含义 ElasticSearch对比Mysql Mysql数据库Elastic SearchDatabase7.X版本前有Type,对比数据库中的表,新版取消了TableIndexRowDocumentColumnmapping Elasticsearch是使用Java开发的,8.1版本的ES需要JDK17及以上…

Web3:探索区块链与物联网的融合

引言 随着科技的不断发展,区块链技术和物联网技术都成为了近年来备受瞩目的前沿技术。而当这两者结合在一起,将产生怎样的化学反应呢?本文将深入探讨Web3时代中区块链与物联网的融合,探索其意义、应用场景以及未来发展趋势。 1. …

Elasticsearch-相关性

相关性描述的是⼀个⽂档和查询语句匹配的程度。ES 会对每个匹配查询条件的结果进⾏算分_score。_score 的评分越高,相关度越高。 ES 5.0之前使用TF-IDF 相关性算法, 5.0之后使用了BM25算法 TF-IDF 公式 score(q,d) queryNorm(q) coord(q,d) …

MFC标签设计工具 图片控件上,移动鼠标显示图片控件内的鼠标xy的水平和垂直辅助线要在标签模板上加上文字、条型码、二维码 找准坐标和字体大小 源码

需求:要在标签模板上加上文字、条型码、二维码 找准坐标和字体大小 我生成标签时,需要对齐和 调文字字体大小。这工具微调 能快速知道位置 和字体大小。 标签设计(点击图片,上下左右箭头移动 或-调字体) 已经够用了,滚动条还没完…

sheng的学习笔记-AI-YOLO算法,目标检测

AI目录:sheng的学习笔记-AI目录-CSDN博客 目录 目标定位(Object localization) 定义 原理图 具体做法: 输出向量 图片中没有检测对象的样例 损失函数 ​编辑 特征点检测(Landmark detection) 定义&a…