tensorflow安装以及在Anaconda中安装使用

news2024/11/15 19:49:16

      在遥感领域进行深度学习时,通常使用python进行深度学习,会使用到tensorflow的安装,今天小编就给大家介绍如何在Anaconda中安装tensorflow!

下载Anaconda  Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror ,下载完成之后开始安装,该勾选的都勾选安装即可,可以安装在非C盘。

安装Python

进入到windows中的命令模式:

(1)检测anaconda环境是否安装成功:conda --version

(2)检测目前安装了哪些环境变量:conda info --envs

(3)对于Anaconda中安装一个内置的python版本解析器(其实就是python的版本)

        查看当前有哪些可以使用的python版本:conda search  --full -name python

        安装python版本(我这里是安装的3.5的版本,这个根据需求来吧):conda create --name tensorflow python=3.5

(4)激活tensflow的环境:activate tensorflow(注意:这个是在后序安装成功之后才能进行的,否则会提示错误)

(5)检测tensflow的环境添加到了Anaconda里面:conda info --envs(注意:基于后序安装成功之后才进行的,否则会提示错误)

(6)检测当前环境中的python的版本:python --version

(7)退出tensorflow的环境:deactivate

(8)切换到tensorflow的环境:activate tensorflow      

上面的这些基本就可以对于Anaconda有一个比较简单的了解,其实它就类似于JDK的一些操作,比如我们查看jdk的版本,也可以用java --version ,所以说对于Anaconda去安装tensorflow是比较简单的原因也正是这样,也就是是给我们提供了一个基础的依赖环境,这样就方便我们进行后面的安装操作;
 

4:进行正式的安装Tensorflow
注意事项:根据Tensorflow的官方文档,可以得到安装tensorflow的一个命令是下面:

pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow-1.0.0-cp35-cp35m-win_x86_64.whl

但是,如果我们在cmd中,直接进行这样的话,有可能是不能够成功的,开始也不知道为什么,后面发现是跟电脑的cpu和显卡有点关系,所以,采取后面的方法进行安装;

5:通过命令:pip install --upgrade --ignore-installed tensorflow
剩下的就是慢慢的等待安装的过程啦

温馨提示:(1)如果在这个命令之后,有提示说需要你升级你的pip的版本,那么你就根据上面的提示进行命令安装就可以了

6:等待完成之后,确认是否安装成功
(1)打开之前安装的Anaconda

这两个都可以,我这里说一下使用Anaconda Prompt的方式;

方法一:步骤:①直接点击进入,就会显示如下的内容:

②切换到tensorflow的环境

③进入python编辑环境

④然后编写一个使用的代码:

方法二:通过使用Anaconda中的spyder的编辑器

通过这个的方式的话,更加简单,直接编写上面的代码,然后进行运行就可以啦,我这里就不多介绍了。。。

7:OK,到这里的话,基本上从安装到成功就已经实现了~~~~

温馨提示:如果你发现,你的conda和tensorflow环境都是安装成功的,但是一用测试代码进行跑的时候就出问题了,那么请注意,这个原因你由于你在安装tensorflow的时候,是直接在cmd下,而不是在你用conda激活的一个环境,所以导致,tensorflow并没有直接嵌入到conda环境,所以,就导致无法导入模块的一个错误;

解决方法:(1)只需要在activate tensorflow      ----------注意:这个环境是第三步中的第3点里面创建的;

(2)然后再使用第五步中的命令就可以了  

二:将Tensorflow环境嵌入到编辑器中
环境:Tensorflow和Pycharm编辑器

步骤:

1:下载Pycharm软件,,这个的话下载安装都很简单,所以就不多说了

2:使用Pycharm创建一个项目

3:设置项目的相关内容

温馨提示:注意上面的Interpreter的选择,因为我们现在要测试的是tensorflow嵌入到我们的IDE,方便我们开发,所以这个python解析器就是要选择我们之前安装tensorflow目录下的解析器,否则的话,我们之后是使用不了tensorflow的模块的内容的哦。。。特别要注意。。。当然,如果这里不选择,那么在创建工程之后还是可以修改的,后面我会说;

4:创建一个py文件,用于编写测试代码

5:运行程序代码

OKOK,,,这就说明我们的环境已经整合完成啦。。。。大功告成

温馨提示:有时候我们会发现,我们引入了tensorflow模块之后,那就会报错,这个原因有如下可能:

(1)tensorflow没有安装成功,这样的话,就需要重新按照我的步骤去了!

(2)IDE中的python解析器,没有使用tensorflow中安装的那个,所以导致无法识别

这个解决方案有两种:

第一种:就是创建工程的时候就选择正确的解析器,也就是我上面所使用的方法

第二种:就是在项目工程里面进行修改配置:

步骤:1:选择File----》setting

2:

3:添加新的解析器

4:找到我们安装的Anadonda中的env中的tensorflow中的python.exe

5:点击apply应用,然后重启我们的IDE,这样的话就不会报无法找到tensorflow的模块的错误了。

版本:Linux(Ubuntu14.0.1)
三:Linux环境安装Tensorflow(通过Anaconda方式)
步骤:(1)下载Anaconda的Linux版本   https://www.anaconda.com/download/#linux

从官网的路径进行下载,一般都很慢,所以,大家可以去这个地址进行下载(或者在进行留言也可以):https://download.csdn.net/download/cs_hnu_scw/10389323

(2)运行下载好的Anaconda,找到下载的目录,然后执行命令:bash XXXXXXXXX(就是Anaconda文件的名字)

(3)一直等待安装完成即可;

当出现下面这个的时候:

强烈注意一点:在安装的时候,会提示你是否要将这个添加到环境变量中,最好选择Yes,要不然每次都要进行额外的手动添加,非常的不方便,所以强烈建议直接添加到环境变量中;

(4)当执行完成上面的步骤之后,对Anaconda 的环境进行测试;

执行命令:conda --version (作用:查看当前Anaconda的版本)

如果,出现对应的安装版本,那么就表示安装成功,可以继续后面的安装步骤。

(5)添加tensorflow的环境。执行命令:conda create -n tensorflow python=3.5(版本的话,我个人比较喜欢3.X+版本)。当执行完成之后,就根据提示,进行输入yes就可以了,慢慢等待。

(6)激活环境,执行命令:source activate tensorflow (作用:进入到tensorflow的环境)

(7)激活tensorflow的环境,执行命令:

pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.8.0rc0-cp27-none-linux_x86_64.whl

千万要注意一个地方:如果你安装的python的版本是2.7.那么就用上面的地址,即可,如果你用了3.5版本,那么久需要对应的修改为如下链接:(其他版本类似修改)

pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.12.1-cp35-cp35m-linux_x86_64.whl

(8)执行完之后,剩下的就只有等待了,,,对于出现的提示,全部都是“yes”即可。

(9)安装完成之后,进行测试。

具体步骤:

1:在tensorflow的环境下,执行命令:python      (作用:表示进入python环境)

2:然后输入代码(这个其实和windows安装的时候测试时一样):

import tensorflow as tf
hello = tf.constant('first tensorflow')
sess = tf.Session()
print sess.run(hello)
如果:输出first tensorflow ,那么就表示安装成功了。

补充内容:

1:当需要退出python环境,即执行Ctrl+D或者输入quit即可

2:退出tensorflow环境,source deactivate

3:激活tensorflow环境,source activate tensorflow

四:Pycharm整合tensorflow环境
(1)下载Pycharm,这个就自己到官网下载Linux的社区版本即可,然后对其下载的文件进行相应的解压命令处理就可以了,另外的话,注意一点,在Linux中运行Pycharm不是直接点击就运行,而是需要找到对应的目录下(bin目录),然后执行命令:sh pycharm.sh 即可运行Pycharm。

(2)这个其实和windows的整合方式是一样的,只是说tensorflow的路径是不一样的而已,所以,大家可以参考上面对于Windows版本的详细配置过程即可,这里就不多说了。

---------------------------------------------------------------------------------------------------------------------------------

五:Tensorflow的案例实践
(1)案列实践:通过百度云盘下载我分享的内容即可,里面的内容都是封装好的,所以应该能看懂

项目链接:https://pan.baidu.com/s/1-TelzkLHodDNsdX6G82ZOg       密码:b05p

温馨提示:(1)在运行这个代码的时候,会出现ImportError: No module named 'matplotlib',这是因为你python中缺少了这个包,所以需要进行额外添加;或者进入tensorflow的环境,然后通过pip install matplotlib

解决办法:进入cmd,然后conda install matplotlib ,,然后等安装成功即可,这时候就会找到从而解决这个问题;

(2)手写数字的识别案例:

数据:https://pan.baidu.com/s/1UC6uBPPOBzZhYvNV93RgNw

代码:

#!/usr/bin/python
# -*- coding:utf-8 -*-
# @Time   : 2018/3/30 0030 15:20
# @Author : scw
# @File   : writenumbercompute.py
# 描述:进行手写数字的识别的实例分析
import tensorflow as tf
 
from tensorflow.examples.tutorials.mnist import input_data
 
# 获取数据
mnist = input_data.read_data_sets("E:/tensorflowdata/MNIST_data/", one_hot=True)
 
print('训练集信息:')
print(mnist.train.images.shape,mnist.train.labels.shape)
print('测试集信息:')
print(mnist.test.images.shape,mnist.test.labels.shape)
print('验证集信息:')
print(mnist.validation.images.shape,mnist.validation.labels.shape)
 
# 构建图
sess = tf.InteractiveSession()
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
 
y = tf.nn.softmax(tf.matmul(x,W) + b)
 
y_ = tf.placeholder(tf.float32, [None,10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y),reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
 
# 进行训练
tf.global_variables_initializer().run()
 
for i in range(1000):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  train_step.run({x: batch_xs, y_: batch_ys})
 
# 模型评估
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
 
print('MNIST手写图片准确率:')
print(accuracy.eval({x: mnist.test.images, y_: mnist.test.labels}))
(3)拨号键与短信息图标的识别
功能描述:主要是实现对于拨号键图标与短信息键图标的一个识别,作为一个简单的分类Demo。

原文链接:https://bbs.csdn.net/forums/gisrs?spm=1001.2014.3001.6682

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1549388.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DNS隧道攻击

什么是DNS隧道? DNS隧道是一种网络通信技术,它利用DNS(Domain Name System,域名系统)协议来建立隐蔽的通信通道。在正常情况下,DNS协议主要用于将域名解析为IP地址,但攻击者可以通过构造特殊的…

windows下安装 isaac sim gym (OmniIsaacGymEnvs)

一、介绍 Isaac Sim是NVIDIA Omniverse平台的一款机器人仿真工具包,它具备构建虚拟机器人世界和进行实验的关键功能。该工具包为研究人员和从业者提供了所需的工具和工作流程,以创建健壮、物理精确的模拟和合成数据集。Isaac Sim通过ROS/ROS2支持导航和…

观成科技:白象组织BADNEWS木马加密通信分析总结报告

概述 白象,又名Hangover、Patchwork、摩诃草等,该组织主要针对中国、巴基斯坦等亚洲地区国家进行网络间谍活动,攻击目标以政府机构、科研教育领域为主。 自16年起,该APT组织一直持续使用攻击武器BADNEWS开展攻击活动&#xff0c…

【Java程序设计】【C00387】基于(JavaWeb)Springboot的校园食堂订餐系统(有论文)

基于(JavaWeb)Springboot的校园食堂订餐系统(有论文) 项目简介项目获取开发环境项目技术运行截图 博主介绍:java高级开发,从事互联网行业六年,已经做了六年的毕业设计程序开发,开发过…

快速上手Spring Cloud 十:Spring Cloud与微前端

快速上手Spring Cloud 一:Spring Cloud 简介 快速上手Spring Cloud 二:核心组件解析 快速上手Spring Cloud 三:API网关深入探索与实战应用 快速上手Spring Cloud 四:微服务治理与安全 快速上手Spring Cloud 五:Spring …

2024年【G3锅炉水处理】考试题及G3锅炉水处理考试报名

题库来源:安全生产模拟考试一点通公众号小程序 G3锅炉水处理考试题参考答案及G3锅炉水处理考试试题解析是安全生产模拟考试一点通题库老师及G3锅炉水处理操作证已考过的学员汇总,相对有效帮助G3锅炉水处理考试报名学员顺利通过考试。 1、【多选题】锅筒…

基于DWT(离散小波变换)的图像水印算法,Matlab实现

博主简介: 专注、专一于Matlab图像处理学习、交流,matlab图像代码代做/项目合作可以联系(QQ:3249726188) 个人主页:Matlab_ImagePro-CSDN博客 原则:代码均由本人编写完成,非中介,提供…

Seata:分布式事务

Seata简介 Seata(Simple Extensible Autonomous Transaction Architecture,简单可扩展自治事务框架)是 2019 年 1 月份蚂蚁金服和阿里巴巴共同开源的分布式事务解决方案。Seata 开源半年左右,目前已经有超过 1.1 万 star&#xf…

babyos 学习记录

宏定义头文件 将一个宏定义取不同的数据到不同的数组中; 侵入式链表 struct list_head { struct list_head *next, *prev; }; // 添加(list_add_tail/list_add)、删除、查找 xx.h // 定义一个用于链表管理的结构体 typedef sturct{ xxx …

搜维尔科技:【应急演练】【工业仿真】救援模拟演练可视化仿真项目实施

安全救援综合演练系统是一套面向公共安全事故、预案管理、应急救援模拟演练的虚拟仿真解决方案,它为警察、消防以及专门的应急救援保障部门提供一个综合的应急救援培训和仿真演练平台。平台主要通过设计不同的事故模型和特定的灾难场景,定制不同的应急救…

跨站脚本攻击

跨站脚本攻击又称XSS攻击,是代码注入攻击的一种。利用XSS漏洞,攻击者可以窃取Cookies或劫持会话,或注入恶意 HTML 或 JavaScript 代码到页面中,又或者将当前页面重定向至一个攻击者搭建的恶意网站。XSS漏洞的产生多是因为网站开发…

全国草地资源类型分布图

草地出现在世界各地,约占全球陆地面积的24%,大多分布于大陆内部气候干燥、降水较少的地区,其中澳大利亚、俄罗斯、中国、美国和巴西等国面积较大。中国草地面积约占国土面积的40%,主要分布在内蒙古、东北、西北和青藏高原&#xf…

前端学习之JavaScript有关字符串的一些方法

&#xff08;注释是对各个方法的一些解释&#xff09; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>字符串</title> </head> <body><script>let str1 test1let str2 n…

nvidia-smi参数信息

nvidia-smi参数信息 如图所示

组织机构代码是哪9位在那里怎么查询?

全国组织机构代码由八位数字&#xff08;或大写拉丁字母&#xff09;本体代码和一位数字&#xff08;或大写拉丁字母&#xff09;校验码&#xff0c;共9位组成&#xff1b; 组织机构代码在哪里怎么查询&#xff1f; 1、打开「词令」小程序&#xff1b; 2、打开词令小程序后&a…

数据结构之单链表的详细实现(图解)

前言 本次博客讲结合图例讲解单向不带头非循环链表 此后会讲解一些题目 1单链表的实现 1.1什么是单链表 我们先看数组&#xff0c;即顺序表的是什么样的&#xff0c;再看链表 1.2单链表的特点 实际中要实现的链表的结构非常多样&#xff0c;以下情况组合起来就有8种链表结…

Avalonia笔记2 -数据集合类控件

学习笔记&#xff1a; 1. DataGrid 笔记1中已经记录&#xff1b; 2. ItemsControl 属性&#xff1a; ItemsSource&#xff1a;数据源 ItemsControl.ItemTemplate&#xff1a;单项数据模板&#xff0c;内部使用<DataTemplate> 示例&#xff1a; <ItemsContr…

html页面使用@for(){},@if(){},利用jquery 获取当前class在列表中的下标

基于以前的项目进行修改优化&#xff0c;前端代码根据List元素在html里进行遍历显示 原先的代码&#xff1a; 其中&#xff0c;noticeGuide.Id是标识noticeGuide的唯一值&#xff0c;但是不是从0开始的【是数据库自增字段】 但是在页面初始化加载的时候&#xff0c;我们只想…

程序员35岁的职业困惑及应对之道

35岁,对许多程序员来说,是一个职业生涯的重要分水岭。在这个年龄,一些人开始感到迷茫和焦虑,担心自己的技能已经落后,难以跟上日新月异的技术变革。而另一些人则充满信心,认为多年来积累的丰富经验和扎实的技术功底,将助力他们在未来的职业道路上取得新的飞跃。 无疑,在AI、自…

Transformer的前世今生 day09(Transformer的框架概述)

前情提要 编码器-解码器结构 如果将一个模型分为两块&#xff1a;编码器和解码器那么编码器-解码器结构为&#xff1a;编码器负责处理输入&#xff0c;解码器负责生成输出流程&#xff1a;我们先将输入送入编码器层&#xff0c;得到一个中间状态state&#xff0c;并送入解码器…