Amuse:.NET application for stable diffusion

news2025/1/22 11:54:21

目录

Welcome to Amuse!

Features

Why Choose Amuse?

Key Highlights

Paint To Image

Text To Image

Image To Image

Image Inpaint

Model Manager

Hardware Requirements

Compute Requirements

Memory Requirements

System Requirements

Realtime Requirements


Welcome to Amuse!

Amuse is a professional and intuitive Windows UI for harnessing the capabilities of the ONNX (Open Neural Network Exchange) platform, allowing you to easily augment and enhance your creativity with the power of AI.

Amuse, written entirely in .NET, operates locally with a dependency-free architecture, providing a secure and private environment and eliminating the need for intricate setups or external dependencies such as Python. Unlike solutions reliant on external APIs, Amuse functions independently, ensuring privacy by operating offline. External connections are limited to the essential process of downloading models, preserving the security of your data and shielding your creative endeavors from external influences.

Experience the power of AI without compromise


Features

  • Paint To Image: Experience real-time AI-generated drawing-based art with stable diffusion.

  • Text To Image: Generate stunning images from text descriptions with AI-powered creativity.

  • Image To Image: Transform images seamlessly using advanced machine learning models.

  • Image Inpaint: Effortlessly fill in missing or damaged parts of images with intelligent inpainting.

  • Model Management: Install, download and manage all your models in a simple user interafce.

Amuse provides compatibility with a diverse set of models, including

  • StableDiffusion 1.5
  • StableDiffusion Inpaint
  • SDXL
  • SDXL Inpaint
  • SDXL-Turbo
  • LatentConsistency
  • LatentConsistency XL
  • Instaflow

Why Choose Amuse?

Amuse isn’t just a tool; it’s a gateway to a new realm of AI-enhanced creativity. Unlike traditional machine learning frameworks, Amuse is tailored for artistic expression and visual transformation. This Windows UI brings the power of AI to your fingertips, offering a unique experience in crafting AI-generated art.

Key Highlights

  • Intuitive AI-Enhanced Editing: Seamlessly edit and enhance images using advanced machine learning models.

  • Creative Freedom: Unleash your imagination with Text To Image, Image To Image, Image Inpaint, and Live Paint Stable Diffusion features, allowing you to explore novel ways of artistic expression.

  • Real-Time Results: Witness the magic unfold in real-time as Amuse applies live inference, providing instant feedback and empowering you to make creative decisions on the fly.

Amuse is not about building or deploying; it’s about bringing AI directly into your creative process. Elevate your artistic endeavors with Amuse, the AI-augmented companion for visual storytellers and digital artists.


Paint To Image

Paint To Image is a cutting-edge image processing technique designed to revolutionize the creative process. This method allows users to paint on a canvas, transforming their artistic expressions into high-quality images while preserving the unique style and details of the original artwork. Harnessing the power of stable diffusion, Paint To Image opens up a realm of possibilities for artistic endeavors, enabling users to seamlessly translate their creative brushstrokes into visually stunning images. Whether it’s digital art creation, stylized rendering, or other image manipulation tasks, Paint To Image delivers a versatile and intuitive solution for transforming painted canvases into captivating digital masterpieces.

Paint To Image

Text To Image

Text To Image Stable Diffusion is a powerful machine learning technique that allows you to generate high-quality images from textual descriptions. It combines the capabilities of text understanding and image synthesis to convert natural language descriptions into visually coherent and meaningful images

Text To Image

Image To Image

Image To Image Stable Diffusion is an advanced image processing and generation method that excels in transforming one image into another while preserving the visual quality and structure of the original content. Using stable diffusion, this technique can perform a wide range of image-to-image tasks, such as style transfer, super-resolution, colorization, and more

Image To Image

Image Inpaint

Image inpainting is an image modification/restoration technique that intelligently fills in missing or damaged portions of an image while maintaining visual consistency. It’s used for tasks like photo restoration and object removal, creating seamless and convincing results.

Image Inpaint

Model Manager

Discover the simplicity of our Model Manager – your all-in-one tool for stress-free model management. Easily navigate through an intuitive interface that takes the hassle out of deploying, updating, and monitoring your stable diffusion models. No need for configuration headaches; our Model Manager makes it a breeze to install new models. Stay in control effortlessly, and let your creative process evolve smoothly.

Hardware Requirements

Compute Requirements

Generating results demands significant computational time. Below are the minimum requirements for accomplishing such tasks using Amuse

DeviceRequirement
CPUAny modern Intel/AMD
AMD GPURadeon HD 7000 series and above
IntelHD Integrated Graphics and above (4th-gen core)
NVIDIAGTX 600 series and above.

Memory Requirements

AI operations can be memory-intensive. Below is a small table outlining the minimum RAM or VRAM requirements for Amuse

ModelDevicePrecisionRAM/VRAM
Stable DiffusionGPU16~4GB
Stable DiffusionCPU/GPU32~8GB
SDXLCPU/GPU32~18GB

System Requirements

Amuse provides various builds tailored for specific hardware. DirectML is the default choice, offering the broadest compatibility across devices.

BuildDeviceRequirements
CPUCPUNone
DirectMLCPU, AMD GPU, Nvidia GPUAt least Windows10
CUDANvidia GPUCUDA 11 and cuDNN toolkit
TensorRTNvidia GPUCUDA 11 , cuDNN and TensorRT libraries

Realtime Requirements

Real-time stable diffusion introduces a novel concept and demands a substantial amount of resources. The table below showcases achievable speeds on commonly tested graphics cards

DeviceModelFPS
GTX 2080LCM_Dreamshaper_v7_Olive_Onnx1-2
RTX 3090LCM_Dreamshaper_v7_Olive_Onnx3-4

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1547542.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

集成ES分组查询统计求平均值

前言 之前其实写过ES查询数据,进行分组聚合统计: 复杂聚合分组统计实现 一、目标场景 机房机柜的物联网设备上传环境数据,会存储到ES存到ES的温湿度数据需要查询,进行分组后,再聚合统计求平均值 二、使用步骤 1.引入…

移动端Web笔记day03

移动 Web 第三题 01-移动 Web 基础 谷歌模拟器 模拟移动设备,方便查看页面效果,移动端的效果是当手机屏幕发生了变化,页面和页面中的元素也要跟着等比例变化。 屏幕分辨率 分类: 硬件分辨路 -> 物理分辨率:硬件…

《机器学习:引领数字化时代的技术革命》

随着科技的不断发展,机器学习作为人工智能的重要支柱之一,正迅速崛起并引领着数字化时代的技术革命。本文将从机器学习的技术进展、技术原理、行业应用案例、面临的挑战与机遇以及未来趋势预测和学习路线等方面展开探讨,为您揭示机器学习的神…

c++的学习之路:3、入门(2)

一、引用 1、引用的概念 引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空 间,它和它引用的变量共用同一块内存空间。 怎么说呢,简单点理解就是你的小名,家里人叫你小名&#…

配置DNS后,SSH登录变慢

问题描述 最近使用ssh时出现登录非常缓慢的状态,登录一般需要花费20秒以上才能正常登陆, Connecting to *****:22... Connection established. To escape to local shell, press CtrlAlt].等待十秒钟后,提示登录成功 Last login: Mon Jun …

k8s系列之十七 Istio中的服务治理

删除前面配置的目的地规则 [rootk8s-master ~]# kubectl delete destinationrule details destinationrule.networking.istio.io "details" deleted [rootk8s-master ~]# kubectl delete destinationrule productpage destinationrule.networking.istio.io "pr…

00000基础搭建vue+flask前后端分离项目

我完全是参考的这个vue3flask前后端分离环境速建_flask vue3-CSDN博客 安装了node_js(添加了环境变量) 环境变量 把原来的镜像源换成了淘宝镜像源 npm config set registry https://registry.npmmirror.com/ 查看版本证明安装成功 npm - v 安装npm i…

caffe | 使用caffe SSD制作VOC07112 lmdb数据集

git clone -b ssd https://github.com/weiliu89/caffe.git caffe_ssdcd caffe_ssdcp caffe/Makefile.config caffe_ssd/# 把 cuda 和 cudnn 关了,用 cpu 版本的就好了 make -j32 make pycaffemake test -j8 make runtest -j8 vim ~/.bashrc# 加入 export LD_LIBRAR…

Day49:WEB攻防-文件上传存储安全OSS对象分站解析安全解码还原目录执行

目录 文件-解析方案-目录执行权限&解码还原 目录执行权限 解码还原 文件-存储方案-分站存储&OSS对象 分站存储 OSS对象存储 知识点: 1、文件上传-安全解析方案-目录权限&解码还原 2、文件上传-安全存储方案-分站存储&OSS对象 文件-解析方案-目…

数据分析之Power Pivot多表数据建模

Power Pivot 介绍: 可以融合多个数据表可夺标关联搭建复杂数据模型一次建模,一键刷新DAX函数编写公式计算可将数据模型轻松移植到PBI和SQL中 1.将数据导入power pivot(power pivot------添加到数据模型) 2.导入其他表格,并有一定的关联 导入…

Cesium for UE-03-添加数据集(倾斜摄影)

继续上一章节,在创建了项目和关卡的基础上添加倾斜摄影 重新打开上次的项目和关卡 如果你已经关掉了上次的项目和关卡,可以重新打开ue,然后选择 选择 文件-打开关卡,在弹出的窗口中,选择 上次的关卡,并点击…

web学习笔记(四十五)Node.js

目录 1. Node.js 1.1 什么是Node.js 1.2 为什么要学node.js 1.3 node.js的使用场景 1.4 Node.js 环境的安装 1.5 如何查看自己安装的node.js的版本 1.6 常用终端命令 2. fs 文件系统模块 2.1引入fs核心模块 2.2 读取指定文件的内容 2.3 向文件写入指定内容 2.4 创…

【双指针】Leetcode 有效三角形的个数

题目解析 611. 有效三角形的个数 算法讲解 回顾知识&#xff1a;任意两数之和大于第三数就可以构成三角形 算法 1&#xff1a;暴力枚举 int triangleNumber(vector<int>& nums) {// 1. 排序sort(nums.begin(), nums.end());int n nums.size(), ret 0;// 2. 从…

基于ACO蚁群优化的UAV最优巡检路线规划算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 4.1 蚂蚁移动和信息素更新 4.2 整体优化过程 5.完整程序 1.程序功能描述 基于ACO蚁群优化法的UAV最优巡检路线规划。蚁群优化算法源于对自然界蚂蚁寻找食物路径行为的模拟。在无人机巡检路…

Redis入门三(主从复制、Redis哨兵、Redis集群、缓存更新策略、缓存穿透、缓存击穿、缓存雪崩)

文章目录 一、主从复制1.单例redis存在的问题2.主从复制是什么&#xff1f;3.主从复制的原理4.主从搭建1&#xff09;准备工作2&#xff09;方式一3&#xff09;方式二 5.python中操作1&#xff09;原生操作2&#xff09;Django的缓存操作 二、Redis哨兵&#xff08;Redis-Sent…

SQL109 纠错4(组合查询,order by..)

SELECT cust_name, cust_contact, cust_email FROM Customers WHERE cust_state MI UNION SELECT cust_name, cust_contact, cust_email FROM Customers WHERE cust_state IL ORDER BY cust_name;order by子句&#xff0c;必须位于最后一条select语句之后

【C语言】C语言运算符优先级详解

文章目录 &#x1f4dd;前言&#x1f309;运算符优先级简述 &#x1f320;逻辑与和逻辑或&#x1f309;赋值和逗号运算符 &#x1f320;位运算&#x1f309;条件表达式&#x1f309;位运算与算术运算结合&#x1f309;混合使用条件表达式和赋值运算符&#x1f309; 逗号运算符的…

图像处理与视觉感知---期末复习重点(4)

文章目录 一、图像复原与图像增强1.1 概述1.2 异同点 二、图像复原/退化模型2.1 模型图简介2.2 线性复原法 三、彩色基础四、彩色模型五、彩色图像处理 一、图像复原与图像增强 1.1 概述 1. 图像增强技术一般要利用人的视觉系统特性&#xff0c;目的是取得较好的视觉效果&…

DMA知识

提示&#xff1a;文章 文章目录 前言一、背景二、 2.1 2.2 总结 前言 前期疑问&#xff1a; 本文目标&#xff1a; 一、背景 2024年3月26日23:32:43 今天看了DMA存储器到存储器的DMA传输和存储器到外设的DMA实验&#xff0c;在keil仿真可以看到效果。还没有在protues和开发…

雷卯推荐多种系列汽车级TVS供您选择

1. 车规级TVS的应用 2.车规级TVS系列表格如下 3.方案推荐 12V汽车电源浪涌保护方案 方案优点&#xff1a;用于满足前装汽车的ISO7637-2 5A5BA测试&#xff0c;可采用单独大功率的TVS或PTCTVS的组合方案&#xff0c;满足ISO10605-2&#xff0c; 等级4&#xff0c;接触放电15K…