题目链接:最长斐波那契数列
题目:
输入一个没有重复数字的单调递增的数组,数组中至少有 3 个数字,请问数组中最长的斐波那契数列的长度是多少?例如,如果输入的数组是 [1, 2, 3, 4, 5, 6, 7, 8],由于其中最长的斐波那契数列是 1、2、3、5、8,因此输出 5。
分析:
所谓斐波那契数列,是指数列中从第三个数字开始每个数字都等于前面两个数字之和,如数列 1、2、3、5、8、13 就是一个斐波那契数列。
可以从左至右每次从输入的数组中取出一个数字,使之和前面的若干数字组成斐波那契数列。一个数字可能和前面不同的数字组成不同的斐波那契数列。例如,输入数组 [1, 2, 3, 4, 5, 6, 7, 8],假设我们处理到数字 6,数字 6 就可以和前面的数字组成两个斐波那契数列,分别是 1、5、6 和 2、4、6。也就是说,每处理到一个数字时可能面临若干选择,需要从这些选择中找出最长的斐波那契数列。解决一个问题需要多个步骤,每一步面临若干选择,这个题目看起来适合运用回溯法。但由于这个问题没有要求列出所有的斐波那契数列,而是找出最长斐波那契数列的长度,也就是求最优解,因此可以用动态规划来解决这个问题。
分析确定状态转移方程:
应用动态规划的关键在于找出状态转移方程。将数组记为 A,A[i] 表示数组中下标为 i 的数字。对于每个 j(0 <= j < i),A[j] 都有可能是在某个斐波那契数列中 A[i] 前面的一个数字。如果存在一个 k(0 <= k < j)满足 A[k] + A[j] = A[i],那么这 3 个数字就组成了一个斐波那契数列。这个以 A[i] 为结尾、前一个数字是 A[j] 的斐波那契数列是在以 A[j] 为结尾、前一个数字是 A[k] 的序列的基础上增加一个数字 A[i],因此前者的长度是在后者的长度的基础上加 1。
例如,在数组 A = [1, 2, 3, 4, 5, 6, 7, 8] 中,A[7] 等于 8。数字 8 既可以在 1、2、3、5(结尾数字为 A[4])的基础上形成更长的斐波那契数列,也可以和数字 6(A[5])一起形成斐波那契数列 2、6、8,还可以和数字 7(A[6])一起组成斐波那契数列 1、7、8。虽然序列 2、6 和 1、7 本身都不是斐波那契数列,但在后面添加数字 8 之后就变成斐波那契数列。
由于以 A[i] 为结尾的斐波那契数列的长度依赖于它前面的数字 A[j],不同的 A[j] 能和 A[i] 形成不同的斐波那契数列,它们的长度也可能不同。因此,状态转移方程有两个参数 i 和 j,f(i, j) 表示以 A[i] 为最后一个数字、A[j] 为倒数第 2 个数字的斐波那契数列的长度。如果数组中存在一个数字 k,使 A[i] = A[j] + A[k](0 <= k < j < i),那么 f(i, j) = f(j, k) + 1,即在以 A[j] 为最后一个数字、A[k] 为倒数第 2 个数字的斐波那契数列的基础上增加一个数字 A[i],形成更长的一个数列。f(i, j) 的值可能是 2,此时虽然 A[i] 和 A[j] 这两个数字现在还不能形成一个有效的斐波那契数列,但可能会在之后增加一个新的数字使之形成长度为 3 甚至更长的斐波那契数列。
根据状态转移方程写代码:
由于状态转移方程有两个参数 i 和 j,因此需要一个二维数组来缓存 f(i, j) 的计算结果。i 对应二维数组的行号,j 对应二维数组的列号。由于 i 大于 j,因此实际上只用到了二维数组的左下角部分。如果数组的长度是 n,那么 i 的取值范围为 1 ~ n - 1,而 j 的取值范围为 0 ~ n - 2。
下表记录了计算数组 [1, 2, 3, 4, 5, 6, 7, 8] 中最长斐波那契数列的长度的过程。
代码实现:
class Solution {
public:
int lenLongestFibSubseq(vector<int>& arr) {
unordered_map<int, int> numToIndex;
numToIndex[arr[0]] = 0;
int n = arr.size();
vector<vector<int>> dp(n, vector<int>(n - 1));
int result = 0;
for (int i = 1; i < n; ++i)
{
for (int j = 0; j < i; ++j)
{
int target = arr[i] - arr[j];
if (numToIndex.count(target) && numToIndex[target] < j)
{
int k = numToIndex[target];
dp[i][j] = dp[j][k] + 1;
result = max(result, dp[i][j]);
}
else
{
dp[i][j] = 2;
}
}
numToIndex[arr[i]] = i;
}
return result;
}
};