Py之scikit-learn-extra:scikit-learn-extra的简介、安装、案例应用之详细攻略

news2024/11/17 7:16:59

Py之scikit-learn-extra:scikit-learn-extra的简介、安装、案例应用之详细攻略

目录

scikit-learn-extra的简介

scikit-learn-extra的安装

scikit-learn-extra的案例应用

1、使用 scikit-learn-extra 中的 IsolationForest 模型进行异常检测


scikit-learn-extra的简介

scikit-learn-extra - 与scikit-learn兼容的一组有用工具。scikit-learn-extra是一个用于机器学习的Python模块,它扩展了scikit-learn。它包括一些有用的算法,但由于其新颖性或引用数量较低等原因,不符合scikit-learn的包含标准。

scikit-learn-extra 是一个 Python 模块,用于机器学习,它扩展了 scikit-learn。与 scikit-learn 不同,scikit-learn-extra 包含一些非常有用的算法,但由于它们的新颖性或引用数量较低,不符合 scikit-learn 的包含标准。这些算法可能包括一些实验性的或者专门用于特定任务的模型。

scikit-learn-extra的安装

scikit-learn-extra需要:

Python (>=3.7)
scikit-learn (>=0.24),以及其依赖项

pip install -i https://mirrors.aliyun.com/pypi/simple scikit-learn-extra

scikit-learn-extra的案例应用

1、使用 scikit-learn-extra 中的 IsolationForest 模型进行异常检测

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn_extra.ensemble import IsolationForest

# 创建一个示例数据集
X, _ = make_classification(n_samples=1000, n_features=10, n_classes=2, random_state=42)

# 将数据集分成训练集和测试集
X_train, X_test = train_test_split(X, test_size=0.2, random_state=42)

# 初始化 IsolationForest 模型
isolation_forest = IsolationForest(random_state=42)

# 在训练集上拟合模型
isolation_forest.fit(X_train)

# 使用模型进行异常检测
outliers = isolation_forest.predict(X_test)

# 打印异常检测结果
print("Outliers:", outliers)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1542049.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Orbit 使用指南 10|在机器人上安装传感器 | Isaac Sim | Omniverse

如是我闻: 资产类(asset classes)允许我们创建和模拟机器人,而传感器 (sensors) 则帮助我们获取关于环境的信息,获取不同的本体感知和外界感知信息。例如,摄像头传感器可用于获取环境的视觉信息&#xff0c…

【小沐学Python】Python实现Web图表功能(Lux)

文章目录 1、简介2、安装3、测试3.1 入门示例3.2 入门示例2 结语 1、简介 https://github.com/lux-org/lux 用于智能可视化发现的 Python API Lux 是一个 Python 库,通过自动化可视化和数据分析过程来促进快速简便的数据探索。通过简单地在 Jupyter 笔记本中打印出…

我的风采——android studio

目录 实现“我的风采”页面要求理论代码生成apk文件 实现“我的风采”页面 要求 要求利用’java框架的边框布局实现“找的风采 ”页而,其中中间为你的生活照,左右和下面为按钮,上面为标签 理论 Java GUI编程是Java程序设计的重要组成部分…

QT(C++)-error LNK2038: 检测到“_ITERATOR_DEBUG_LEVEL”的不匹配项: 值“2”不匹配值“0”

1、项目场景: 在VS中采用QT(C)调试时,出现error LNK2038: 检测到“_ITERATOR_DEBUG_LEVEL”的不匹配项: 值“2”不匹配值“0”错误 2、解决方案: 在“解决方案资源管理器”中选中出现此类BUG的项目,右键-…

uniapp-Form示例(uviewPlus)

示例说明 Vue版本&#xff1a;vue3 组件&#xff1a;uviewPlus&#xff08;Form 表单 | uview-plus 3.0 - 全面兼容nvue的uni-app生态框架 - uni-app UI框架&#xff09; 说明&#xff1a;表单组建、表单验证、提交验证等&#xff1b; 截图&#xff1a; 示例代码 <templat…

PCIe总线-PCIe总线简介(一)

1.概述 早期的计算机使用PCI&#xff08;Peripheral Component Interconnect&#xff09;总线与外围设备相连&#xff0c;PCI总线使用单端并行信号进行数据传输&#xff0c;由于单端信号很容易被外部系统干扰&#xff0c;其总线频率很难进一步提高。目前&#xff0c;为了提高总…

k8s笔记27--快速了解 k8s pod和cgroup的关系

k8s笔记27--快速了解 k8s pod和 cgroup 的关系 介绍pod & cgroup注意事项说明 介绍 随着云计算、云原生技术的成熟和广泛应用&#xff0c;K8S已经成为容器编排的事实标准&#xff0c;学习了解容器、K8S技术对于新时代的IT从业者显得极其重要了。 之前在文章 docker笔记13–…

UDS升级入门,手把手教你——开篇

前面关于OTA的文章&#xff0c;写的比较乱&#xff0c;索性整了一个专栏&#xff0c;来认真梳理下&#xff0c;话不多开整。 准备工作&#xff1a; 1、QT环境 上位机开发 2、MDK环境&#xff0c;STM32F103&#xff0c;vscode MCU开发环境&#xff0c;调试 3、JFlash环境安…

【C语言数据结构】排序

1.排序的概念 在深入研究各个排序算法之前&#xff0c;首先&#xff0c;我们要对排序有个大概的了解&#xff0c;即与排序相关的一些概念 Q&#xff1a;什么是排序&#xff1f; A&#xff1a;所谓排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大小…

基于Java中的SSM框架实现考研指导平台系统项目【项目源码+论文说明】

基于Java中的SSM框架实现考研指导平台系统演示 摘要 应对考研的学生&#xff0c;为了更好的使校园考研有一个更好的环境好好的学习&#xff0c;建议一个好的校园网站&#xff0c;是非常有必要的。提供学生的学习提供一个交流的空间。帮助同学们在学习高数、学习设计、学习统计…

使能 Linux 内核自带的 FlexCAN 驱动

一. 简介 前面一篇文章学习了 ALPHA开发板修改CAN的设备树节点信息&#xff0c;并加载测试过设备树文件&#xff0c;文件如下&#xff1a; ALPHA开发板修改CAN的设备树节点信息-CSDN博客 本文是学习使能 IMX6ULL的 CAN驱动&#xff0c;也就是通过内核配置来实现。 二. 使能…

Spring Cloud五:Spring Cloud与持续集成/持续部署(CI/CD)

Spring Cloud一&#xff1a;Spring Cloud 简介 Spring Cloud二&#xff1a;核心组件解析 Spring Cloud三&#xff1a;API网关深入探索与实战应用 Spring Cloud四&#xff1a;微服务治理与安全 文章目录 一、Spring Cloud在CI/CD中的角色1. 服务注册与发现&#xff1a;自动化管理…

YOLOV5 部署:TensorRT的安装和使用

1、介绍 TensorRT 可以加速神经网络的推理时间,常常在工业生产中使用 因为TensorRT需要使用到cuda和cudnn加速,所以需要安装这两个,安装的具体步骤参考前文: YOLOV5 部署:cuda和cuDNN安装-CSDN博客 2、TensorRT 下载 TensorRT下载地址:NVIDIA TensorRT Download | NV…

分类预测 | Matlab实现CNN-LSTM-Mutilhead-Attention卷积神经网络-长短期记忆网络融合多头注意力机制多特征分类预测

分类预测 | Matlab实现CNN-LSTM-Mutilhead-Attention卷积神经网络-长短期记忆网络融合多头注意力机制多特征分类预测 目录 分类预测 | Matlab实现CNN-LSTM-Mutilhead-Attention卷积神经网络-长短期记忆网络融合多头注意力机制多特征分类预测分类效果基本介绍模型描述程序设计参…

初识kafka-数据存储篇1

目录 背景 1 kafka总体体系结构 2 疑问解答 2.1 高吞吐低延迟 2.2 实现分布式存储和数据读取 2.3 如何保证数据不丢失 背景 最近在和产品过项目审批的时候&#xff0c;深刻感受到业务方对系统的时时响应提出了更高的要求。目前手上大部分的业务都是基础定时任务去实现的&…

[Java基础揉碎]单例模式

目录 什么是设计模式 什么是单例模式 饿汉式与懒汉式 饿汉式vs懒汉式 懒汉式存在线程安全问题 什么是设计模式 1.静态方法和属性的经典使用 2.设计模式是在大量的实践中总结和理论化之后优选的代码结构、编程风格、 以及解决问题的思考方式。设计模式就像是经典的棋谱&am…

使用 RunwayML 对图像进行 Camera 操作

RunwayML 是一個功能強大的平台&#xff0c;可以讓您使用 AI 和机器学习来增强您的图像和视频。 它提供一系列预训练模型&#xff0c;可用于各种任务&#xff0c;包括图像编辑、风格化和特效。 在本文中&#xff0c;我们将介绍如何使用 RunwayML 对图像进行 Camera 操作。我们…

游戏引擎中的地形系统

一、地形的几何 1.1 高度图 记录不同定点的高度&#xff0c;对每个网格/顶点应用高度、材质等信息&#xff0c;我们每个顶点可以根据高度改变位移 但是这种方法是不适用于开放世界的。很难直接画出几百万公里的场景 1.2 自适应网格细分 当fov越来越窄的时候&#xff0c;网格…

Stable diffusion(四)

训练自己的Lora 【DataSet】【Lora trainer】【SD Lora trainer】 前置的知识 batch size&#xff1a;模型一次性处理几张图片。一次性多处理图片&#xff0c;模型能够综合捕捉多张图片的特征&#xff0c;最终的成品效果可能会好。但是处理多个batch size也意味着更大的显存…

第一篇:概述、 目录、适用范围及术语 --- IAB/MRC《增强现实(AR)广告(效果)测量指南1.0 》

第一篇&#xff1a;概述、目录、适用范围及术语 - IAB与MRC及《增强现实广告效果测量指南1.0》 --- 我为什么要翻译美国IAB科技公司系列标准 ​​​​​​​​​​​​​​ 翻译计划 第一篇概述—IAB与MRC及《增强现实广告效果测量指南》之目录、适用范围及术语第二篇广告效…