【蓝牙协议栈】【BLE】低功耗蓝牙配对绑定过程分析(超详细)

news2024/11/17 22:00:12

 1. 精讲蓝牙协议栈(Bluetooth Stack):SPP/A2DP/AVRCP/HFP/PBAP/IAP2/HID/MAP/OPP/PAN/GATTC/GATTS/HOGP等协议理论

2. 欢迎大家关注和订阅,【蓝牙协议栈】和【Android Bluetooth Stack】专栏会持续更新中.....敬请期待!

目录

1. 配对/绑定概念介绍

2. 配对基本概念解读

3. Paring流程及命令

2.1 阶段1:配对特性交换

2.2 阶段2:密钥生成

2.2.1 legacy paring

2.2.2 LESC paring

2.3 阶段3:秘密信息分发

2.4 绑定,重连和加密

2.5 配对命令一览表


1. 配对/绑定概念介绍

Paring(配对)和bonding(绑定)是实现蓝牙射频通信安全的一种机制,有两点需要注意:

1. paring/bonding实现的是蓝牙链路层的安全,对应用来说完全透明,也就是说,不管有没有paring/bonding,你发送或接收应用数据的方式是一样的,不会因为加了paring/bonding应用数据传输需要做某些特殊处理;

2. 安全有两种选项:加密或者签名,目前绝大多数应用都是选择加密,后续我们也会以加密为重点进行讲述。实现蓝牙通信安全,除了paring/bonding这种底层方式,用户也可以在应用层去实现相同功能,两者从功能上和安全性上没有本质区别,只不过应用层自己实现的话,需要自己选择密码算法,密钥生成,密钥交换等,如果你不是这方面的专家,你的应用就有可能会存在安全漏洞。Paring/bonding则把上述过程标准化,放在了蓝牙协议栈中,并且其安全性得到了充分评估,用户可以 “无感的” 用上安全的蓝牙通信。

        Paring/bonding是蓝牙security manager(SM)的一部分,SM定义了蓝牙通信的安全框架,里面涉及安全架构,密码工具箱,paring协议等,其中paring协议是关键,所以我们经常把paring和SM二者等价,下面将对paring进行详细阐述。

2. 配对基本概念解读

         Paring(配对),配对包括配对能力交换,设备认证,密钥生成,连接加密以及机密信息分发等过程,配对的目的有三个:加密连接,认证设备,以及生成密钥。从手机角度看,一旦设备跟手机配对成功,蓝牙配置菜单将包含该配对设备,如下所示:


        

        如果用户需要主动删除配对设备,点击配对设备右边的“设置”菜单,出现如下界面,选择“取消配对”或者“忽略该设备”,设备的配对信息即被手机删除。

        Bonding(绑定),配对过程中会生成一个长期密钥(LTK,long-term Key),如果配对双方把这个LTK存储起来放在Flash中,那么这两个设备再次重连的时候,就可以跳过配对流程,而直接使用LTK对蓝牙连接进行加密,设备的这种状态称为bonding。如果paring过程中不存储LTK(不分发LTK)也是可以的,paring完成后连接也是加密的,但是如果两个设备再次重连,那么就需要重走一次paring流程,否则两者还是明文通信。在不引起误解的情况下,我们经常把paring当成paring和bonding两者的组合,因为只paring不bonding的应用情况非常少见。在不引起混淆的情况下,下文就不区分paring和bonding的区别,换句话说,我们会把paring和bonding两个概念等同起来进行混用。

SM(security manager),蓝牙协议栈的安全管理层,规定了跟蓝牙安全通信有关的所有要素,包括paring,bonding,以及下文提到的SMP。

SMP(security manager protocol),安全管理协议,SMP着重两个设备之间的蓝牙交互命令序列,对paring的空中包进行了严格时序规定。

OOB(out of band,带外),OOB就是不通过蓝牙射频本身来交互,而是通过比如人眼,NFC,UART等带外方式来交互配对信息,在这里人眼,NFC,UART通信方式就被称为OOB通信方式。

Passkey,又称pin码,是指用户在键盘中输入的一串数字,以达到认证设备的目的。低功耗蓝牙的passkey必须为6位。

Numeric comparison(数字比较),numeric comparison其实跟passkey一样,也是用来认证设备的,只不过passkey是通过键盘输入的,而numeric comparison是显示在显示器上的,numeric comparison也必须是6位的数字。

MITM(man in the middle),MITM是指A和B通信过程中,C会插入进来以模拟A或者B,并且具备截获和篡改A和B之间所有通信报文的能力,从而达到让A或者B信任它,以至于错把C当成B或者A来通信。如果对安全要求比较高,需要具备MITM保护能力,在SM中这个是通过认证(authentication)来实现的,SM中实现认证的方式有三种:OOB认证信息,passkey以及numeric comparison,大家根据自己的实际情况,选择其中一种即可。

LESC(LE secure connections),又称SC,蓝牙4.2引入的一种新的密钥生成方式和验证方式,SC通过基于椭圆曲线的Diffie-Hellman密钥交换算法来生成设备A和B的共享密钥,此密钥生成过程中需要用到公私钥对,以及其他的密码算法库。LESC同时还规定了相应的通信协议以生成该密钥,并验证该密钥。需要注意的是LESC对paring的其他方面也会产生一定的影响,所以我们经常会把LESC看成是一种新的配对方式。

Legacy paring,在LESC引入之前的密钥生成方式,称为legacy paring,换句话说,legacy paring是相对LESC来说的,不支持LESC的配对即为legacy paring(legacy配对)。

TK(Temporary Key,临时密钥),legacy paring里面的概念,如果采用just work配对方式,TK就是为全0;如果采用passkey配对方式,TK就是passkey;如果采用OOB配对方式,TK就是OOB里面的信息。

STK(short term key,短期密钥),legacy配对里面的概念,STK是通过TK推导出来的,通过TK对设备A和B的随机数进行加密,即得到STK。

LTK(long term key,长期密钥),legacy配对和LESC配对都会用到LTK,如前所述,LTK是用来对未来的连接进行加密和解密用的。Legacy paring中的LTK由从设备根据相应的算法自己生成的(LTK生成过程中会用到EDIV(分散因子)和Rand(随机数)),然后通过蓝牙空中包传给主机。LESC配对过程中,先通过Diffie-Hellman生成一个共享密钥,然后这个共享密钥再对设备A和B的蓝牙地址和随机数进行加密,从而得到LTK,LTK由设备A和B各自同时生成,因此LTK不会出现在LESC蓝牙空中包中,大大提高了蓝牙通信的安全性。

IRK(Identity Resolving Key,蓝牙设备地址解析密钥),有些蓝牙设备的地址为可解析的随机地址,比如iPhone手机,由于他们的地址随着时间会变化,那如何确定这些变化的地址都来自同一个设备呢?答案就是IRK,IRK通过解析变化的地址的规律,从而确定这些地址是否来自同一个设备,换句话说,IRK可以用来识别蓝牙设备身份,因此其也称为Identity information。IRK一般由设备出厂的时候按照一定要求自动生成。

Identity Address(设备唯一地址),蓝牙设备地址包括public,random static, private resolvable,random unresolved共四类。如果设备不支持privacy,那么identity address就等于public或者random static设备地址。如果设备支持privacy,即使用private resolvable蓝牙设备地址,在这种情况下,虽然其地址每隔一段时间会变化一次,但是identity address仍然保持不变,其取值还是等于内在的public或者random static设备地址。Identity Address和IRK都可以用来唯一标识一个蓝牙设备。

IO capabilities(输入输出能力),是指蓝牙设备的输入输出能力,比如是否有键盘,是否有显示器,是否可以输入Yes/No两个确认值。

Key size(密钥长度),一般来说,密钥默认长度为16字节,为了适应一些低端的蓝牙设备处理能力,你也可以把密钥长度调低,比如变为10个字节。

3. Paring流程及命令

 Paring包含三个阶段:

配对特性交换,即交换各自都支持哪些配对特性,比如支不支持SC,支不支持MITM,支不支持OOB,以及它的输入输出能力等
密钥生成阶段,legacy paring和LESC paring两者的区别就在这里,因此后续我们会分开阐述legacy paring和SC paring的阶段
Legacy paring:STK生成(注:legacy paring的LTK生成跟配对流程无关,如前所述,其是由从机自己生成的)
SC paring:LTK生成
     3. 通过蓝牙空中包分发一些秘密信息。Legacy paring需要分发LTK,IRK等,而SC paring只需分发IRK。秘密信息分发之前,必须保证连接已加密。

Paring流程如下所示:

2.1 阶段1:配对特性交换

配对特性交换涉及三条PDU命令:

  • Paring_Request

  • Paring_Response

  • Security_Request

 IO Capability占一个字节,其定义如下所示:

AuthReq也是占用一个字节,其定义如下所示:

2.2 阶段2:密钥生成

        根据阶段1的IO输入输出能力以及是否存在OOB,阶段2存在如下几种配对方式(或者说认证方式)

Just works
Numeric comparison(LESC才有)
Passkey
OOB

        对于legacy paring,如果A和B都支持OOB,那么两者就会采用OOB方式进行配对,否则根据IO能力选择配对方式。

        对于SC paring,如果A或者B有一方支持OOB,那么两者就会采用OOB方式进行配对,否则根据IO能力选择配对方式。不同的IO能力对应的配对方式如下所示:

注:粗略来说,有认证的配对方式就具备MITM保护功能,从IO角度看,有三种配对方式:just works,passkey和Numeric Comparison,其中just works没有MITM保护功能,而passkey和Numeric comparison具备MITM保护功能。换句话说,如果你要求你的设备具备MITM保护功能,那么它必须有一定IO能力,而不能是“NoInputNoOutput”。至于OOB方式有没有MITM保护,取决于OOB通信的安全性,如果OOB通信具备MITM保护,那么蓝牙也具备MITM保护,否则就不具备。

下面分legacy paring和sc paring对配对流程进行讲解。

2.2.1 legacy paring

       Legacy paring整个配对流程是围绕STK生成来做的,设备的认证是通过设备A和B经由TK生成一个确认数,如果这个确认数相同,则认证通过。

如前所述,legacy paring需要先生成TK,TK的生成方式取决于配对方式:

Just works。TK默认为全0
Passkey。TK由6位passkey扩展而来
OOB。TK直接由OOB数据提供

然后生成确认数,算法如下所示

生成STK的算法如下所示:

passkey legacy paring为例,其第2阶段全工作流程如下所示:

Just works和OOB配对流程就不再赘述了,大家自己去看一下蓝牙核心规范的说明。

这里强调一下,配对完成之后,连接就会加密,而且加密的密钥是STK,而不是LTK。

2.2.2 LESC paring

          跟legacy paring不一样的地方,LESC paring是通过Diffie-Hellman算法直接生成LTK,因此它不需要生成TK和STK。为了生成LTK,双方需要先交换公钥,流程如下所示:

        公钥交换后,设备A和B就开始独自计算各自的DHKey,按照D-H算法,他们俩算出的DHKey会是同一个。而LTK和MacKey就是通过这个DHKey加密一系列数据而得到的。

        Legacy paring在整个配对流程中只做一次认证,而LESC paring会做两次认证。LESC第一阶段认证的原理是,设备A和B各生成一个随机数,然后认证这个随机数对不对。LESC第二阶段认证过程是:设备A和B通过MacKey各生成一个检查值,对方确认这个值对不对。

        以LESC Numeric comparison为例,其第一阶段认证流程如下所示:

        我们还是以LESC Numeric comparison为例,其第二阶段全工作流程如下所示:

        一旦LTK生成成功,主机端就可以发起加密连接流程,如下所示:

至此,LESC连接被LTK加密了,后面就可以分发秘密信息了。

2.3 阶段3:秘密信息分发


一旦连接加密了,主机和从机之间就可以分发一些秘密信息。

如果是legacy paring,如下秘密信息必须分发:

LTK
EDIV
Rand


同时根据情况,legacy paring还需分发如下信息:

IRK
Identity address


如果是LESC paring,秘密信息分发是可选,一般有可能分发如下信息:

IRK
Identity address


如下为legacy paring可能分发的最多秘密信息的一个例子:

2.4 绑定,重连和加密

         如上所述,如果配对的两个设备生成了LTK及其他秘密信息,并且把LTK及其他秘密信息保存到Flash等永久化存储设备中,那么我们就可以说这两个设备绑定成功。换句话说,paring和bonding是两个不同的概念,paring更强调认证和密钥生成,而bonding更强调密钥保存。一旦两个设备bonding成功,那么这两个设备断开再次重连的时候,主机就可以发起加密流程,从而使用paring生成的LTK对后续的连接进行加密。主机发出加密连接流程如下所示:


         这里说明一下,加密连接只能由主机发出,而不能由从机发起。不过从机可以发出加密请求,主机收到从机的加密请求后,可以发起加密连接也可以拒绝其请求。如下为主机同意从机的加密请求的工作流程:

2.5 配对命令一览表

如下为SM中用的PDU命令列表:(注:加密连接命令属于LL控制命令,所以没有包含在其中)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1540690.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

网络层(IP层)

IP协议的本质:有将数据跨网络传输的能力 而用户需要的是将数据从主机A到主机B可靠地跨网络传输 IP的组成:目标网络目标主机 IP由目标网络和目标主机两部分组成,IP报文要进行传输,要先到达目标网络,然后经过路由器转到…

Unity3d Shader篇(十六)— 模拟雪的Shader

文章目录 前言一、什么是模拟雪的Shader?1. 雪Shader原理2. 雪Shader优缺点优点:缺点: 二、使用步骤1. Shader 属性定义2. SubShader 设置3. 渲染 Pass4. 定义结构体和顶点着色器函数5. 片元着色器函数6. 控制雪大小的脚本 三、效果四、总结 …

AI大模型学习:理论基石、优化之道与应用革新

✨✨ 欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨ 🌟🌟 欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢,在这里我会分享我的知识和经验。&am…

数组三(冒泡排序、二分查找)

目录 冒泡排序算法 冒泡排序的基础算法 冒泡排序的优化算法 二分法查找 冒泡排序算法 冒泡排序是最常用的排序算法,在笔试中也非常常见,能手写出冒泡排序算法可以说是 基本的素养。 冒泡排序的基础算法 冒泡排序算法重复地走访过要排序的数列&#…

GUROBI的数据结构

为了在GUROBI中能够更加高效地建模,Python API内置了三种特殊的数据结构,方便根据下标来查找数据。注意在使用这三种数据结构之前需要 import gurobipy as gp multidict 一、普通字典dict()的用法 小结:普通字典dict()只有一个返回值&…

Java代码基础算法练习-数位交换-2024.03.23·

任务描述: 输入一个三位整数,将其个位和百位交换后输出 任务要求: package march0317_0331;import java.util.Scanner;public class m240323 {public static void main(String[] args) {Scanner scanner new Scanner(System.in);System.out…

PointNet++论文复现(二)【最远点采样-球查询-采样和分组 代码详解】

最远点采样-球查询-采样和分组-代码详解 专栏持续更新中!关注博主查看后续部分! 最远点采样、球查询等位于 pointnet2_utils.py 定义 点云坐标归一化 点云坐标归一化是一种预处理步骤,用于将点云数据标准化到一个统一的尺度,通常是在一个特定的范围内,比如 [-1, 1] 或…

服务器运行一段时间后

自己记录一下。 一、查看目录占用情况 df -h 命令查看磁盘空间 du -ah --max-depth=1 / 查看根目录下各个文件占用情况 二、mysql日志清空 这个日志是可以清空的 echo > /usr/local/mysql/data/syzl-db2.log #将文件清空 说明: 这个文件这么大是因为,开启 …

[ C++ ] STL---反向迭代器的模拟实现

目录 前言: 反向迭代器简介 list反向迭代器的模拟实现 反向迭代器的模拟实现(适配器模式) SGI版本STL反向迭代器源码 STL库中解引用操作与出口设计 适配list的反向迭代器 适配vector的反向迭代器 前言: 反向迭代器是一种特殊类型的迭代器&#xf…

C语言函数和数组

目录 一.数组 一.一维数组: 1.一维数组的创建: 2.一维数组的初始化: 3.一维数组的使用 4.一维数组在内存中的存储: 二.二维数组: 三.数组越界: 四.数组作为函数参数: 二.函数 一.函数是什么&…

Redis I/O多路复用

I/O多路复用 Redis的I/o多路复用中,将多个连接放到I/O复用程序中,这个复用程序具体是什么,是Redis的主线程吗 在Redis的I/O多路复用机制中,“复用程序”实际上指的是操作系统提供的系统调用接口,如Linux下的epoll、sel…

Unity 学习日记 8.2D物理引擎

1.2D刚体的属性和方法 2.碰撞器

探索 Flutter 中的 NavigationRail:使用详解

1. 介绍 在 Flutter 中,NavigationRail 是一个垂直的导航栏组件,用于在应用程序中提供导航功能。它通常用于更大屏幕空间的设备,如平板电脑和桌面应用程序。NavigationRail 提供了一种直观的方式来浏览应用程序的不同部分,并允许…

【并发编程】锁相关公平锁和非公平锁?可重入锁锁的升级乐观锁和悲观锁版本号机制CAS 算法乐观锁有哪些问题?

目录 ​编辑 锁相关 公平锁和非公平锁? 可重入锁 锁的升级 乐观锁和悲观锁 版本号机制 CAS 算法 乐观锁有哪些问题? 锁相关 公平锁和非公平锁? 公平锁 : 锁被释放之后,先申请的线程先得到锁。性能较差一些,因…

第六届“传智杯”决赛 流水账 | 珂学家

前言 整体评价 有幸参加了第六届的传智杯决赛(A组),因为这个比赛是牛客协办,所以就写在这里。 作为Java选手,比赛中其实吃亏了,主要是T2吃了一发TLE,T4吃了一发莫名其妙的MLE。 顺便吐槽下T3,自测反馈WA…

局域网内的手机、平板、电脑的文件共享

在日常工作生活中,经常需要将文件在手机、平板、电脑间传输,以下介绍三种较为便捷的方法: 1.LocalSend 该软件是免费开源的,可以在局域网内的任意手机、平板、电脑间传递文件,并且任意一方都可以作为“发送方”和“接…

Windows11 安装confluence 7.4.0

Windows11安装confluence:7.4.0 1.打开终端管理员(管理员权限的PowerShell)2.按顺序执行以下命令,安装confluence服务3.浏览器(如Microsoft Edge) 打开 http://127.0.0.1:8100/ 配置confluence4.图示 本文是Windows11 安装confluence 7.4.0的步骤 本文参考 1.打开终端管理员(管…

⾃定义类型:结构体

目录 1. 结构体类型的声明 1.1 结构体回顾 1.1.1 结构的声明 1.1.2 结构体变量的创建和初始化 1.2 结构的特殊声明 1.3 结构的⾃引⽤ 2. 结构体内存对⻬ 2.1 对⻬规则 2.2 为什么存在内存对⻬? 2.3 修改默认对⻬数 3. 结构体传参 4. 结构体实现位段 4.1 什么是位段…

tcp 协议详解

什么是 TCP 协议 TCP全称为 “传输控制协议(Transmission Control Protocol”). 人如其名, 要对数据的传输进行一个详细的控制。TCP 是一个传输层的协议。 如下图: 我们接下来在讲解 TCP/IP 协议栈的下三层时都会先解决这两个问题: 报头与有效载荷如何…

基于Springboot的艺体培训机构业务管理系统(有报告)。Javaee项目,springboot项目。

演示视频: 基于Springboot的艺体培训机构业务管理系统(有报告)。Javaee项目,springboot项目。 项目介绍: 采用M(model)V(view)C(controller)三层…