文章目录
- 三角函数
- 定义式
- 诱导公式
- 平方关系
- 两角和与差的三角函数
- 积化和差公式
- 和差化积公式
- 倍角公式
- 半角公式
- 万能公式
- 其他公式
- 反三角函数恒等式
- 三角函数
- 定义式
三角函数
定义式
余切:
c
o
t
A
=
1
t
a
n
A
\text { 余切:} \ cotA = \frac{1}{tanA}
余切: cotA=tanA1
正切:
s
e
c
A
=
1
c
o
s
A
\text { 正切:} \ secA = \frac{1}{cosA}
正切: secA=cosA1
余割:
c
s
c
A
=
1
s
i
n
A
\text { 余割:} \ cscA = \frac{1}{sinA}
余割: cscA=sinA1
反正切: a r c t a n ( t a n X ) = t a n ( a r c t a n X ) = X \text { 反正切:} \ arctan(tanX) = tan(arctanX) = X 反正切: arctan(tanX)=tan(arctanX)=X
诱导公式
- sin ( − α ) = − sin α
- cos ( − α ) = cos α
- sin ( π 2 − α ) = cos α
- cos ( π 2 − α ) = sin α
- sin ( π 2 + α ) = cos α
- cos ( π 2 + α ) = − sin α
- sin ( π − α ) = sin α
- cos ( π − α ) = − cos α
- sin ( π + α ) = − sin α
- cos ( π + α ) = − cos α
平方关系
1
+
t
a
n
2
α
=
s
e
c
2
α
1 + tan^2α = sec^2α
1+tan2α=sec2α
1
+
c
o
t
2
α
=
c
s
c
2
α
1 + cot^2α = csc^2α
1+cot2α=csc2α
s
i
n
2
α
+
c
o
s
2
α
=
1
sin^2α + cos^2α = 1
sin2α+cos2α=1
两角和与差的三角函数
s
i
n
(
α
+
β
)
=
s
i
n
α
c
o
s
β
+
c
o
s
α
s
i
n
β
sin ( α + β ) = sin α cos β + cos α sin β
sin(α+β)=sinαcosβ+cosαsinβ
c
o
s
(
α
+
β
)
=
c
o
s
α
c
o
s
β
−
s
i
n
α
s
i
n
β
cos ( α + β ) = cos α cos β − sin α sin β
cos(α+β)=cosαcosβ−sinαsinβ
s
i
n
(
α
−
β
)
=
s
i
n
α
c
o
s
β
−
c
o
s
α
s
i
n
β
sin ( α − β ) = sin α cos β − cos α sin β
sin(α−β)=sinαcosβ−cosαsinβ
c
o
s
(
α
−
β
)
=
c
o
s
α
c
o
s
β
+
s
i
n
α
s
i
n
β
cos ( α − β ) = cos α cos β + sin α sin β
cos(α−β)=cosαcosβ+sinαsinβ
t
a
n
(
α
+
β
)
=
t
a
n
α
+
t
a
n
β
1
−
t
a
n
α
t
a
n
β
tan ( α + β ) = \frac{ tan α + tan β}{1 - tan α tan β}
tan(α+β)=1−tanαtanβtanα+tanβ
t
a
n
(
α
−
β
)
=
t
a
n
α
−
t
a
n
β
1
+
t
a
n
α
t
a
n
β
tan ( α − β ) = \frac{ tan α - tan β}{1 + tan α tan β}
tan(α−β)=1+tanαtanβtanα−tanβ
积化和差公式
c
o
s
α
c
o
s
β
=
1
2
[
c
o
s
(
α
+
β
)
+
c
o
s
(
α
−
β
)
]
cos α cos β = \frac{1}{2} [ cos ( α + β ) + c o s ( α − β ) ]
cosαcosβ=21[cos(α+β)+cos(α−β)]
c
o
s
α
s
i
n
β
=
1
2
[
s
i
n
(
α
+
β
)
−
s
i
n
(
α
−
β
)
]
cos α sin β = \frac{1}{2} [ sin ( α + β ) - sin ( α − β ) ]
cosαsinβ=21[sin(α+β)−sin(α−β)]
s
i
n
α
c
o
s
β
=
1
2
[
s
i
n
(
α
+
β
)
+
s
i
n
(
α
−
β
)
]
sin α cos β = \frac{1}{2} [ sin ( α + β ) + sin ( α − β ) ]
sinαcosβ=21[sin(α+β)+sin(α−β)]
s
i
n
α
s
i
n
β
=
−
1
2
[
c
o
s
(
α
+
β
)
+
c
o
s
(
α
−
β
)
]
sin α sin β = -\frac{1}{2} [ cos ( α + β ) + c o s ( α − β ) ]
sinαsinβ=−21[cos(α+β)+cos(α−β)]
和差化积公式
s
i
n
α
+
s
i
n
β
=
2
s
i
n
α
+
β
2
c
o
s
α
−
β
2
sin α + sin β = 2 sin \frac{α + β}{2} cos \frac{α - β}{2}
sinα+sinβ=2sin2α+βcos2α−β
s
i
n
α
−
s
i
n
β
=
2
c
o
s
α
+
β
2
s
i
n
α
−
β
2
sin α - sin β = 2 cos \frac{α + β}{2} sin \frac{α - β}{2}
sinα−sinβ=2cos2α+βsin2α−β
c
o
s
α
+
c
o
s
β
=
2
c
o
s
α
+
β
2
c
o
s
α
−
β
2
cos α + cos β = 2 cos \frac{α + β}{2} cos \frac{α - β}{2}
cosα+cosβ=2cos2α+βcos2α−β
c
o
s
α
−
c
o
s
β
=
−
2
s
i
n
α
+
β
2
s
i
n
α
−
β
2
cos α - cos β = -2 sin \frac{α + β}{2} sin \frac{α - β}{2}
cosα−cosβ=−2sin2α+βsin2α−β
倍角公式
s
i
n
2
α
=
2
s
i
n
α
c
o
s
α
sin 2 α = 2 sin α cos α
sin2α=2sinαcosα
c
o
s
2
α
=
c
o
s
2
α
−
s
i
n
2
α
=
1
−
2
s
i
n
2
α
=
2
c
o
s
2
α
−
1
cos 2 α = cos ^2 α − sin ^2 α = 1 − 2 sin ^2 α = 2 cos ^2 α − 1
cos2α=cos2α−sin2α=1−2sin2α=2cos2α−1
s
i
n
3
α
=
−
4
s
i
n
3
α
+
3
s
i
n
α
sin 3 α = − 4 sin ^3 α + 3 sin α
sin3α=−4sin3α+3sinα
c
o
s
3
α
=
4
c
o
s
3
α
−
3
c
o
s
α
cos 3 α = 4 cos ^3 α − 3 cos α
cos3α=4cos3α−3cosα
s
i
n
2
α
=
1
−
c
o
s
2
α
2
sin ^2 α = \frac{1 − cos 2 α}{2}
sin2α=21−cos2α
c
o
s
2
α
=
1
+
c
o
s
2
α
2
cos ^2 α = \frac{1 + cos 2 α}{2}
cos2α=21+cos2α
t
a
n
2
α
=
2
t
a
n
α
1
−
t
a
n
2
α
tan 2 α = \frac{2 tan α}{1 − tan ^2 α }
tan2α=1−tan2α2tanα
c
o
t
2
α
=
c
o
t
2
α
−
1
2
c
o
t
α
cot 2 α = \frac{cot ^2 α − 1}{2 cot α}
cot2α=2cotαcot2α−1
半角公式
s
i
n
2
α
2
=
1
−
c
o
s
α
2
sin ^2 \frac{α}{2} = \frac{1 − cos α}{2}
sin22α=21−cosα
c
o
s
2
α
2
=
1
+
c
o
s
α
2
cos ^2 \frac{α}{2} = \frac{1 + cos α}{2}
cos22α=21+cosα
s
i
n
α
2
=
±
1
−
c
o
s
α
2
sin \frac{α}{2} = ±\sqrt{\frac{1 - cos α}{2}}
sin2α=±21−cosα
c
o
s
α
2
=
±
1
+
c
o
s
α
2
cos \frac{α}{2} = ±\sqrt{\frac{1 + cos α}{2}}
cos2α=±21+cosα
t
a
n
α
2
=
1
−
c
o
s
α
s
i
n
α
=
s
i
n
α
1
+
c
o
s
α
=
±
1
−
c
o
s
α
1
+
c
o
s
α
tan \frac{α}{2} = \frac{1 - cos α}{sin α} = \frac{sin α}{1 + cos α } = ±\sqrt{\frac{1 - cos α}{1 + cos α}}
tan2α=sinα1−cosα=1+cosαsinα=±1+cosα1−cosα
c
o
t
α
2
=
s
i
n
α
1
−
c
o
s
α
=
1
+
c
o
s
α
s
i
n
α
=
±
1
+
c
o
s
α
1
−
c
o
s
α
cot \frac{α}{2} = \frac{sin α}{1 - cos α} = \frac{1 + cos α }{sin α } = ±\sqrt{\frac{1 + cos α}{1 - cos α}}
cot2α=1−cosαsinα=sinα1+cosα=±1−cosα1+cosα
万能公式
s
i
n
α
=
2
t
a
n
α
2
1
+
t
a
n
2
α
2
sin α = \frac{2tan \frac{α}{2}}{1 + tan ^2 \frac{α}{2}}
sinα=1+tan22α2tan2α
c
o
s
α
=
1
−
t
a
n
2
α
2
1
+
t
a
n
2
α
2
cos α = \frac{1 - tan ^2 \frac{α}{2}}{1 + tan ^2 \frac{α}{2}}
cosα=1+tan22α1−tan22α
其他公式
1
+
s
i
n
α
=
(
s
i
n
α
2
+
c
o
s
α
2
)
2
1 + sin α = ( sin \frac{α}{2} + cos \frac{α}{2}) ^2
1+sinα=(sin2α+cos2α)2
1
−
s
i
n
α
=
(
s
i
n
α
2
−
c
o
s
α
2
)
2
1 - sin α = ( sin \frac{α}{2} - cos \frac{α}{2}) ^2
1−sinα=(sin2α−cos2α)2
反三角函数恒等式
a
r
c
s
i
n
x
+
a
r
c
c
o
s
x
=
π
2
arcsin x + arccos x = \frac{π}{2}
arcsinx+arccosx=2π
a
r
c
t
a
n
x
+
a
r
c
c
o
t
x
=
π
2
arctan x + arccot x = \frac{π}{2}
arctanx+arccotx=2π
s
i
n
(
a
r
c
c
o
s
x
)
=
1
−
x
2
sin ( arccos x ) = \sqrt{1 − x ^2}
sin(arccosx)=1−x2
c
o
s
(
a
r
c
s
i
n
x
)
=
1
−
x
2
cos ( arcsin x ) = \sqrt{1 − x ^2}
cos(arcsinx)=1−x2
s
i
n
(
a
r
c
s
i
n
x
)
=
x
sin ( arcsin x ) = x
sin(arcsinx)=x
a
r
c
s
i
n
(
s
i
n
x
)
=
x
arcsin ( sin x ) = x
arcsin(sinx)=x
c
o
s
(
a
r
c
c
o
s
x
)
=
x
cos ( arccos x ) = x
cos(arccosx)=x
a
r
c
c
o
s
(
c
o
s
x
)
=
x
arccos ( cos x ) = x
arccos(cosx)=x
a
r
c
c
o
s
(
−
x
)
=
π
−
a
r
c
c
o
s
x
arccos ( − x ) = π − arccos x
arccos(−x)=π−arccosx