深度学习Top10算法之深度神经网络DNN

news2024/9/30 1:41:09

深度神经网络(Deep Neural Networks,DNN)是人工神经网络(Artificial Neural Networks,ANN)的一种扩展。它们通过模仿人脑的工作原理来处理数据和创建模式,广泛应用于图像识别、语音识别、自然语言处理等领域。

一、背景

早期发展(1940s-1980s)

1940年代初期:神经网络的最初概念源于Warren McCulloch和Walter Pitts的工作。他们提出了一种简化的大脑神经元模型,并展示了其计算潜力。
1958年:Frank Rosenblatt发明了感知机(Perceptron),这是一种二进制输出的简单神经网络,可执行简单的分类任务。
1969年:Marvin Minsky和Seymour Papert出版了《Perceptrons》,指出了感知机的局限性,尤其是它不能解决线性不可分问题(如异或问题)。这导致了第一次AI冬天。

BP算法(1980s)

1980年代初期:多层神经网络和反向传播算法(Backpropagation,BP)的发展标志着神经网络研究的复兴。特别是,1986年,David Rumelhart、Geoffrey Hinton和Ronald Williams发表了一篇关键论文,详细描述了BP算法。这种算法能够有效地训练多层网络,并解决了感知机面临的某些限制。

深度学习的崛起(2000s-2010s)

2006年:Geoffrey Hinton和他的学生在一篇论文中重新引入了深度神经网络的概念,提出了一种新的无监督预训练方法。这标志着深度学习时代的开始。
2012年:Alex Krizhevsky、Ilya Sutskever和Geoffrey Hinton发布了AlexNet的论文。这个模型在ImageNet竞赛中大获全胜,展示了深度学习在视觉识别任务中的巨大潜力。
随后几年:深度学习在各个领域迅速崛起,特别是在计算机视觉、自然语言处理等领域。诸如卷积神经网络(CNN)、循环神经网络(RNN)以及长短期记忆网络(LSTM)等架构的发展,进一步推动了这一领域的发展。

二、原理介绍

深度神经网络的原理

深度神经网络(DNN)的基本构成包括输入层、若干隐藏层和输出层。每个层由多个神经元(或称为节点)组成,这些神经元通过带权重的连接相互作用。下面是DNN的基本数学原理和公式:

1. 神经元模型

每个神经元接收来自前一层神经元的输入,计算加权和,并应用一个激活函数。一个神经元的输出可以表示为:

y = f ( ∑ i = 1 n w i x i + b ) y = f\left(\sum_{i=1}^{n} w_i x_i + b\right) y=f(i=1nwixi+b)

其中:

  • x i x_i xi 是输入值,
  • w i w_i wi 是对应的权重,
  • b b b 是偏置项,
  • f f f 是激活函数(如ReLU、Sigmoid等)。
2. 前向传播

在前向传播过程中,数据从输入层经过每一隐藏层直到输出层。每一层的输出都是下一层的输入。

3. 激活函数

激活函数是用来引入非线性因素的,使得网络能够学习和执行更复杂的任务。常用的激活函数包括:

  • ReLU: f ( x ) = max ⁡ ( 0 , x ) f(x) = \max(0, x) f(x)=max(0,x)
  • Sigmoid: f ( x ) = 1 1 + e − x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+ex1
  • Tanh: f ( x ) = tanh ⁡ ( x ) f(x) = \tanh(x) f(x)=tanh(x)
4. 损失函数

损失函数(Loss Function)用于评估模型的预测值与真实值之间的差距。常见的损失函数包括均方误差(MSE)用于回归任务,交叉熵(Cross-Entropy)用于分类任务。

5. 反向传播与梯度下降

反向传播算法用于计算每个权重对于总损失的影响。基于这个影响,通过梯度下降算法更新权重,以减小损失函数的值。权重更新公式为:

w = w − η ⋅ ∂ L ∂ w w = w - \eta \cdot \frac{\partial L}{\partial w} w=wηwL

其中:

  • w w w 是权重,
  • η \eta η 是学习率,
  • ∂ L ∂ w \frac{\partial L}{\partial w} wL 是损失函数相对于权重的梯度。
6. 优化器

优化器是用来更新网络的权重以减小损失函数值的算法。常见的优化器包括随机梯度下降(SGD)、Adam等。

通过这些步骤,DNN能够从数据中学习复杂的模式和关系,适用于广泛的预测和分类任务。
在这里插入图片描述

三、项目具体案例:基于DNN的衣服分类

数据集

我们将使用著名的Fashion MNIST数据集,它包含了70000张灰度图像,分为10个类别,每个类别有7000张图像。图像的尺寸为28x28像素。

实现步骤

1.导入所需库:首先导入TensorFlow和其他必要的Python库。
2.加载和预处理数据:加载Fashion MNIST数据集,并进行适当的预处理。
3.定义模型:构建一个深度神经网络模型。
4.编译模型:定义损失函数、优化器和评估指标。
5.训练模型:使用训练数据训练模型。
6.评估模型:使用测试数据评估模型的性能。
7.模型预测:对新图像进行预测分类。

示例代码

以下是用于上述任务的Python代码示例。请注意,这是一个简化的示例,实际应用可能需要更详细的调参和优化。

import tensorflow as tf
from tensorflow.keras.datasets import fashion_mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.optimizers import Adam

# 加载数据集
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

# 数据预处理
train_images = train_images / 255.0
test_images = test_images / 255.0

# 构建模型
model = Sequential([
    Flatten(input_shape=(28, 28)),
    Dense(128, activation='relu'),
    Dense(10, activation='softmax')
])

# 编译模型
model.compile(optimizer=Adam(),
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
model.fit(train_images, train_labels, epochs=10)

# 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)

# 使用模型进行预测
predictions = model.predict(test_images)

这段代码首先导入了必要的库,然后加载Fashion MNIST数据集,并对其进行简单的归一化处理。之后,我们构建了一个简单的神经网络模型,包括一个输入层(通过Flatten层实现),两个Dense层作为隐藏层和输出层。接着,我们编译并训练了模型,并在测试集上评估了其性能。最后,我们使用训练好的模型对新图像进行预测。

四、优势与不足

深度神经网络(DNN)是当今人工智能和机器学习领域中最为突出的技术之一,其应用广泛,影响深远。然而,正如任何技术一样,DNN在拥有显著优势的同时,也存在一些不可忽视的不足。以下是对深度神经网络优势与不足的详细分析:

DNN的优势

  1. 强大的数据表示能力
    DNN通过学习大量数据中的复杂模式,能够自动提取和构建有效的数据表示。与传统的机器学习方法相比,DNN不需要人工设计特征,而是可以从原始数据中直接学习到深层次的特征表示。

  2. 多层次的特征学习
    在DNN中,每个隐藏层都可以看作是在进行一种特征的转换和抽象。较低层可能学习到数据的基本元素(如边缘或颜色),而更高层则能够识别更复杂的模式(如物体或人脸)。这种分层学习使得DNN在处理复杂问题时更加高效。

  3. 灵活性和通用性
    DNN的架构设计非常灵活,可以通过改变层数、神经元数目、激活函数等来调整网络结构,从而适应不同类型的数据和任务,如图像识别、语音识别和自然语言处理等。

  4. 大数据驱动
    随着大数据时代的到来,DNN能够利用其强大的数据处理能力,在海量数据中进行学习,这使得其性能随着数据量的增加而提高。

  5. 不断的技术进步
    DNN领域不断有新的研究和技术进展,比如各种新型神经网络架构(如卷积神经网络CNN、循环神经网络RNN)和优化算法,这些进步持续推动着DNN在各个领域的应用。

DNN的不足

  1. 对数据和计算资源的高需求
    DNN通常需要大量的训练数据来实现有效的学习,这在某些情况下可能难以满足。此外,DNN的训练和推理过程计算量大,对硬件资源(如GPU)的需求高。

  2. 过拟合的风险
    在数据量有限或者模型过于复杂的情况下,DNN容易发生过拟合,即模型在训练数据上表现良好,但在新数据上性能下降。

  3. 可解释性问题
    DNN的决策过程往往被视为一个“黑盒”,其内部是如何处理数据和做出决策的,往往缺乏直观的解释。这在需要决策透明度的应用中,如医疗诊断,成为一个重要问题。

  4. 长期依赖问题
    在某些类型的DNN(尤其是RNN)中,模型可能难以学习输入序列中的长期依赖关系。虽然有如LSTM这样的结构来解决这个问题,但它们仍然有其局限性。

  5. 对噪声和对抗样本的脆弱性
    DNN在面对包含噪声的数据或者特意设计的对抗样本时,其性能的稳定性和鲁棒性可能会显著降低。这种脆弱性在安全敏感的应用中尤为重要,如自动驾驶汽车和欺诈检测系统。

  6. 调参难度大
    虽然DNN提供了极大的灵活性,但这也意味着需要调整大量的超参数,如学习率、层数、神经元数量等。合适的参数选择对于模型的性能至关重要,而找到最优参数组合往往需要大量的实验和经验。

  7. 非平稳和动态环境下的挑战
    DNN通常在静态数据集上训练得到最佳性能。然而,在实际应用中,数据可能是非平稳的(即数据分布随时间变化),这需要模型具有动态适应能力,而传统DNN在这方面可能存在不足。

  8. 训练和调试的复杂性
    DNN的训练过程可能非常复杂和时间消耗巨大。此外,当模型表现不佳时,确定问题所在并不总是直观的,这可能导致调试过程费时费力。

  9. 能源效率
    DNN的训练和推理过程通常需要大量计算资源,这导致较高的能源消耗。在可持续性和环境影响日益受到重视的背景下,这一点成为一个重要考量。

  10. 泛化能力的限制
    虽然DNN在训练集上的表现可能很好,但它们在面对与训练数据显著不同的新数据时,泛化能力可能有限。这表明DNN可能在学习数据分布的特定方面,而不是获取到真正通用的知识。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1537920.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Dell戴尔XPS 12 9250二合一笔记本电脑原装出厂Windows10系统包下载

链接:https://pan.baidu.com/s/1rqUEM_q5DznF0om6eevcwg?pwdvij0 提取码:vij0 戴尔原厂WIN10系统自带所有驱动、出厂主题壁纸、系统属性专属联机支持标志、系统属性专属LOGO标志、Office办公软件、MyDell等预装程序 文件格式:esd/wim/sw…

Spring Cloud Alibaba Sentinel 使用详解

一、Sentinel 介绍 随着微服务的流行,服务和服务之间的稳定性变得越来越重要。 Sentinel 以流量为切入点,从流量控制、熔断降级、系统负载保护等多个维度保护服务的稳定性。 Sentinel 具有以下特征: 丰富的应用场景: Sentinel 承接了阿里巴…

【BUG】java.nio.charset.MalformedInputException: Input length = 1

springboot maven 项目启动 编码异常 修改 ERROR org.springframework.boot.SpringApplication - Application run failed java.nio.charset.MalformedInputException: Input length 1 … 修改编码为UTF-8maven : clean -> compile

深度学习:复杂工业场景下的复杂缺陷检测方法

摘要:在复杂的工业场景中,缺陷检测一直是一个重要而具有挑战性的任务。近年来,深度学习技术的快速发展为复杂工业场景下的缺陷检测提供了新的解决方案。本文将介绍深度学习在复杂工业场景下的复杂缺陷检测中的应用,并探讨其技术进…

cool-admin-node.js 中redis缓存的使用

1. 在做cool 后端的时候 用户登录 时的token 需要鉴权的value 以及发送验证码 这些 需要存到缓存里面 ,进行逻辑鉴权 所以我们需要用到redis 缓存 或者数据库缓存 我这里介绍一下redis 的缓存 在cool-admin 中 使用的一般都是宝塔面板 首先得有服务器 需要有自己的…

如何屏蔽来自一些可疑IP对网站的访问

前段时间我们的网站遭受到黑客的攻击,导致网站出现乱码以及丢失了一些网站文件。在我们将网站全部迁移至Hostease虚拟主机后,为了再次避免这种情况发生,我们对网站做了一些安全防护,除了安装一些安全插件之外,我们还屏…

计算机组成原理 数据通路组成实验

一、实验目的 (1)将双端口通用寄存器堆和双端口存储器模块联机; (2)进一步熟悉计算机的数据通路; (3)掌握数字逻辑电路中故障的一般规律,以及排除故障的一般原则和方法; (4)锻炼分析问题与解决问题的能力,在出现故障的情况下,独立分析故障…

基于CSS3制作专属可自由旋转的立方体

一、代码区域 1.1 css3代码区域 <style>* {padding: 0;margin: 0;list-style: none;}/* 1) 定义动画 */keyframes loop {0% {transform: rotateX(348deg) rotateY(67deg) rotateZ(95deg);}50% {transform: rotateX(0deg) rotateY(0deg) rotateZ(0deg);}100% {transform:…

【C++】1597. 买文具

问题&#xff1a;1597. 买文具 类型&#xff1a;基本运算、整数运算 题目描述&#xff1a; 花花去文具店买了 1 支笔和 1块橡皮&#xff0c;已知笔 x 元/ 支&#xff0c;橡皮 y元 / 块&#xff0c;花花付给了老板 n 元&#xff0c;请问老板应该找给花花多少钱&#xff1f; 输…

SQLiteC/C++接口详细介绍sqlite3_stmt类(十三)

返回&#xff1a;SQLite—系列文章目录 上一篇&#xff1a;SQLiteC/C接口详细介绍sqlite3_stmt类&#xff08;十二&#xff09; 下一篇&#xff1a; 待续 51、sqlite3_stmt_scanstatus_reset sqlite3_stmt_scanstatus_reset 函数用于重置指定语句对象最近一次执行的 WHER…

基于python+vue的OA公文发文管理系统flask-django-php-nodejs

系统根据现有的管理模块进行开发和扩展&#xff0c;采用面向对象的开发的思想和结构化的开发方法对OA公文发文管理的现状进行系统调查。采用结构化的分析设计&#xff0c;该方法要求结合一定的图表&#xff0c;在模块化的基础上进行系统的开发工作。在设计中采用“自下而上”的…

大模型分布式推理ray

一、目录 1 框架 2. 入门 3. 安装教程 4. 相关文档、案例阅读 二、实现 1 框架&#xff1a;Ray&#xff1a;将一个模型拆分到多个显卡中&#xff0c;实现分布式预测、训练等功能。 2. 入门 &#xff1a; 案例&#xff1a;通过ray 实现分布式部署&#xff0c;分布式推理服务。…

【ReactJS】使用GoJS实现自己的图表App

目录 1:用于绘制自定义图表的JavaScript库:用于绘制UML(或BPMN或ERD …)图表的JavaScript库:2:为什么选择GoJS?3:让我们使用现有的React应用程序:步骤1:步骤2:步骤3:步骤4:推荐超级课程: Docker快速入门到精通Kubernetes入门到大师通关课AWS云服务快速入门实战1:…

Kubernetes自动化配置部署

在新建工程中&#xff0c;使用k8s的devops服务&#xff0c;自动化部署项目 1、在搭建好k8s的集群中&#xff0c;确认已开启devops服务&#xff1b; 2、新建Maven项目之后&#xff0c;创建dockerfile、deploy和Jenkins文件 例如&#xff1a; Dockerfile FROM bairong.k8s.m…

数据仓库的数据处理架构Lambda和Kappa

1.数据仓库 数据仓库(Data Warehouse),简写DW。顾名思义,数据仓库是一个很大的数据存储集合,为企业分析性报告和决策支持而创建,是对多元业务数据的筛选与整合,具备一定的BI能力,主要用于企业的数据分析、数据挖掘、数据报表等方向,指导业务流程改进、监视时间、成本、…

斯坦福大学研究团队革新电机技术,助力机器人性能飞跃提升

文 | BFT机器人 在科技日新月异的今天&#xff0c;我们期望机器能够胜任的任务愈发复杂且多变。无论是为失去肢体的人提供动力的假肢&#xff0c;还是那些独立在外部世界自由穿梭的机器人&#xff0c;它们都需要在多种场景下展现出卓越的行动能力。 然而传统的标准电动机&…

【Java基础】了解Java安全体系JCA,使用BouncyCastle的ED25519算法生成密钥对、数据签名

文章目录 一.Java安全体系结构二.JCA和JCE三.CSP(加密服务提供程序)与Engine类1.CSP2.Engine类如何使用引擎类 四.查看当前JDK支持的算法服务提供商(Provider)五.BouncyCastle是什么六.如何使用BouncyCastle&#xff1f;七.bouncycastle实现ED25519工具类 一.Java安全体系结构 …

DeepLabv1网路介绍

模型创新点 在论文引言中&#xff0c;作者提出了目前语义分割存在的问题&#xff0c;并且给出了解决办法&#xff1a; 下采样会导致我们图像空间分辨率降低——解决办法 使用膨胀卷积 目前语义分割网络基本都是采用CNN网络作为主干网络&#xff0c;但是CNN网络主要适用于目标检…

获取淘宝商品评论的爬虫技术分享(已封装API,可测试)

item_review-获得淘宝商品评论 公共参数 请求地址: taobao/item_review 名称类型必须描述keyString是调用key&#xff08;必须以GET方式拼接在URL中&#xff09;secretString是调用密钥api_nameString是API接口名称&#xff08;包括在请求地址中&#xff09;[item_search,it…

鸿蒙Harmony应用开发—ArkTS-@Provide装饰器和@Consume装饰器:与后代组件双向同步

Provide和Consume&#xff0c;应用于与后代组件的双向数据同步&#xff0c;应用于状态数据在多个层级之间传递的场景。不同于上文提到的父子组件之间通过命名参数机制传递&#xff0c;Provide和Consume摆脱参数传递机制的束缚&#xff0c;实现跨层级传递。 其中Provide装饰的变…