机器学习-可解释性机器学习:支持向量机与fastshap的可视化模型解析

news2025/1/15 22:44:22

一、引言

支持向量机(Support Vector Machine, SVM)作为一种经典的监督学习方法,在分类和回归问题中表现出色。其优点之一是生成的模型具有较好的泛化能力和可解释性,能够清晰地展示特征对于分类的重要性。

fastshap是一种用于快速计算SHAP值(SHapley Additive exPlanations)的工具,通过近似SHAP值的计算加速了模型的解释过程,使得模型的解释更为高效和可视化。

综上所述,本文将探讨支持向量机和fastshap在可解释性机器学习中的作用。通过结合支持向量机和fastshap,我们可以深入分析模型的决策过程,解释模型的预测结果,从而提高模型的可解释性和可信度。

二、SVM简介

2.1 SVM的原理和优点

支持向量机(Support Vector Machine, SVM)的原理是通过寻找最大间隔超平面来进行分类或回归。在二分类情况下,SVM的目标是找到一个能够将不同类别的数据点分开的超平面,并且使得该超平面到最近的数据点(支持向量)的距离最大化。这种最大化间隔的方法使得SVM具有较强的泛化能力。

对于线性不可分的情况,SVM可以通过核函数将数据映射到高维空间,从而在高维空间中找到一个线性可分的超平面,从而解决非线性分类问题。

  1. 「泛化能力强」:SVM通过最大化间隔的方式进行分类,因此对未知数据的泛化能力较强,有较好的预测性能。
  2. 「高维空间的处理能力」:SVM可以通过核函数将数据映射到高维空间,从而处理线性不可分的问题。
  3. 「对特征的依赖较小」:SVM在模型训练过程中主要依赖支持向量,对于非支持向量的数据点不敏感,可以避免维度灾难和过拟合问题。
  4. 「有效处理小样本数据」:SVM在小样本数据情况下表现出色,可以有效地进行分类和回归。 总的来说,SVM具有较强的泛化能力、高维空间处理能力以及对特征的不敏感性等优点,使其成为机器学习中广泛应用的方法之一。

2.2 SVM在机器学习中的应用场景

  1. 文本分类:SVM可以用于对文本进行分类,如垃圾邮件识别、情感分析等。
  2. 识别:SVM可以应用于图像分类和目标检测等领域,例如人脸识别、车牌识别等。
  3. 生物信息学:SVM在基因分类、蛋白质分类等生物信息学领域有着重要应用。

综上所述,支持向量机作为一种强大的监督学习方法,在文本分类、图像识别、生物信息学等领域展现出了良好的应用前景,同时其高维空间处理能力和泛化能力也使其成为解决复杂问题的重要工具。

三、fastshap方法封装

FastSHAP 是一个用于加速 SHAP(SHapley Additive exPlanations)计算的工具,旨在提高模型可解释性的效率和准确性。

library(magrittr)
library(tidyverse)
library(fastshap)
plot_shap <- function(model,newdata){
    shap <- explain(rf,X=newdata,nsim=10,
        pred_wrapper = function(model,newdata){
           predict(rf, newdata = newdata, type = "class")
        })
    shap_handle <- shap %>% as.data.frame() %>% mutate(id=1:n()) %>% pivot_longer(cols = -(ncol(train_data[,-10])+1),values_to="shap"# 长宽数据转换
    data2 <- newdata %>% mutate(id=1:n()) %>% pivot_longer(cols = -(ncol(newdata)+1))

    shap_scale <- shap_handle %>%
        left_join(data2)%>%
        rename("feature"
        ="name")%>%
        group_by(feature)%>%
        mutate(value=(value-min(value))/(max(value)-min(value))) %>% sample_n(200)
        
    p <- ggplot(data=shap_scale, aes(x=shap, y=feature, color=value)) +
      geom_jitter(size=2, height=0.1, width=0) +
      scale_color_gradient(low="#FFCC33", high="#6600CC", breaks=c(01), labels=c("Low""High"), 
                           guide=guide_colorbar(barwidth=2, barheight=30), 
                           name="Feature value"
                           aesthetics = c("color")) + theme_bw()
      
    return(p)
}

四、实例展示

  • 「数据集准备」
library(survival)
head(gbsg)

结果展示:

   pid age meno size grade nodes pgr er hormon rfstime status
1  132  49    0   18     2     2   0  0      0    1838      0
2 1575  55    1   20     3    16   0  0      0     403      1
3 1140  56    1   40     3     3   0  0      0    1603      0
4  769  45    0   25     3     1   0  4      0     177      0
5  130  65    1   30     2     5   0 36      1    1855      0
6 1642  48    0   52     2    11   0  0      0     842      1
  • 「示例数据集介绍」
> str(gbsg)
'data.frame':   686 obs. of  10 variables:
 $ age    : int  49 55 56 45 65 48 48 37 67 45 ...
 $ meno   : int  0 1 1 0 1 0 0 0 1 0 ...
 $ size   : int  18 20 40 25 30 52 21 20 20 30 ...
 $ grade  : int  2 3 3 3 2 2 3 2 2 2 ...
 $ nodes  : int  2 16 3 1 5 11 8 9 1 1 ...
 $ pgr    : int  0 0 0 0 0 0 0 0 0 0 ...
 $ er     : int  0 0 0 4 36 0 0 0 0 0 ...
 $ hormon : int  0 0 0 0 1 0 0 1 1 0 ...
 $ rfstime: int  1838 403 1603 177 1855 842 293 42 564 1093 ...
 $ status : Factor w/ 2 levels "0","1"1 2 1 1 1 2 2 1 2 2 ...

age:患者年龄
meno:更年期状态(0表示未更年期,1表示已更年期)
size:肿瘤大小
grade:肿瘤分级
nodes:受累淋巴结数量
pgr:孕激素受体表达水平
er:雌激素受体表达水平
hormon:激素治疗(0表示否,1表示是)
rfstime:复发或死亡时间(以天为单位)
status:事件状态(0表示被截尾,1表示事件发生)
  • 「划分训练集和测试集」
# 划分训练集和测试集
set.seed(123)
data <- gbsg[,c(-1)]


# 划分训练集和测试集
set.seed(123)
train_indices <- sample(x = 1:nrow(data), size = 0.7 * nrow(data), replace = FALSE)
test_indices <- sample(setdiff(1:nrow(data), train_indices), size = 0.3 * nrow(data), replace = FALSE)

train_data <- data[train_indices, ]
test_data <- data[test_indices, ]

train_data_feature <- train_data[,-10]
train_data_label <- as.numeric(as.character(train_data$status))
  • 「模型拟合」
library(e1071)
library(pROC)
model <- svm(train_data_feature, train_data_label) 
pred_prob <- predict(model, newdata =train_data_feature,type="raw",threshold = 0.001)
# 计算ROC曲线的参数
roc <- roc(train_data_label, pred_prob)
plot(roc, col = "blue", main = "ROC Curve", xlab = "False Positive Rate", ylab = "True Positive Rate", print.auc = TRUE, legacy.axes = TRUE)


# 绘制shap图
plot_shap(model,train_data_feature)

五、总结

总结支持向量机(Support Vector Machine, SVM)与FastSHAP在可解释性机器学习中的作用:

「支持向量机(SVM)」


  • SVM是一种常用的机器学习算法,主要用于分类和回归任务。
  • 在可解释性方面,SVM的决策边界可以清晰地将不同类别的数据分开,使得模型的预测过程相对容易理解。
  • 可以通过观察支持向量等方式来解释SVM模型的预测结果,帮助用户理解模型的决策依据。

「FastSHAP」


  • FastSHAP是一种加速版的SHAP(SHapley Additive exPlanations)计算方法,用于解释复杂模型的预测过程。
  • 通过FastSHAP可以有效地计算特征的SHAP值,帮助用户理解模型对于不同特征的依赖程度。
  • FastSHAP在提高SHAP值计算效率的同时,也能保持解释性的优势,使得解释性机器学习更加实用。

*「未经许可,不得以任何方式复制或抄袭本篇文章之部分或全部内容。版权所有,侵权必究。」

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1534447.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

华曦传媒陆锋:数字媒体时代,社区电梯广告价值正在被重估

在数字化时代的浪潮中&#xff0c;电梯广告、停车场道闸广告、门禁灯箱广告等线下社区广告似乎面临着生存的挑战。 然而&#xff0c;这一传统广告形式展现出了惊人的韧性和价值。 比如&#xff0c;2023年上半年&#xff0c;作为行业龙头分众传媒&#xff0c;2023年上半年实现…

【Linux】多线程编程基础

&#x1f4bb;文章目录 &#x1f4c4;前言&#x1f33a;linux线程基础线程的概念线程的优缺点线程与进程的区别 线程的创建 &#x1f33b;linux线程冲突概念互斥锁函数介绍加锁的缺点 &#x1f4d3;总结 &#x1f4c4;前言 无论你是否为程序员&#xff0c;相信多线程这个词汇应…

小白也能在3分钟完成短剧解说的剪辑,这是真的!

3分钟的解说视频&#xff0c;真的需要1小时的手工剪辑吗&#xff1f; 生成解说视频需要经过素材准备、解说词创作、声音录制、视频剪辑和视频合成等多个步骤&#xff0c;每个步骤都需要投入一定的时间和精力&#xff0c;因此整个过程较为耗时耗力。 1. 素材准备&#xff1a; 需…

【LINUX笔记】驱动开发框架

应用程序调动驱动程序 驱动模块运行模式 模块加载-卸载 加载卸载注册函数 加载 驱动编译完成以后扩展名为.ko&#xff0c;有两种命令可以加载驱动模块&#xff1a; insmod和modprobe 驱动卸载 驱动注册注销 //查看当前已经被使用掉的设备号 cat /proc/devices 实现设备的具…

AI系统性学习06—开源中文语言大模型

1、ChatGLM ChatGLM-6B的github地址&#xff1a;https://github.com/THUDM/ChatGLM-6B ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型&#xff0c;基于 General Language Model (GLM) 架构&#xff0c;具有 62 亿参数。结合模型量化技术&#xff0c;用户可以在消费级…

【Java Web基础】一些网页设计基础(二)

文章目录 1. Bootstrap导航栏设计1.1 代码copy与删减效果1.2 居中属性与底色设置1.3 占不满问题分析1.4 字体颜色、字体大小、字体间距设置1.5 修改超链接hover颜色&#xff0c;网站首页字体颜色 1. Bootstrap导航栏设计 1.1 代码copy与删减效果 今天设计导航栏&#xff0c;直…

第4关:创建工程项目表J,并插入数据

任务描述 工程项目表J由工程项目代码(JNO)、工程项目名(JNAME)、工程项目所在城市(CITY)组成。创建工程项目表J(JNO,JNAME,CITY)&#xff0c;并在J表中插入下图数据。 相关知识 1、MySQL创建表的基本语法如下&#xff1a; 其中&#xff0c;table_name 是要创建的表的名称&…

Hololens 2应用开发系列(4)——MRTK基础知识及配置文件配置(下)

Hololens 2应用开发系列&#xff08;4&#xff09;——MRTK基础知识及配置文件配置&#xff08;下&#xff09; 一、前言二、边界系统&#xff08;Boundary&#xff09;三、传送系统&#xff08;Teleport&#xff09;四、空间感知系统&#xff08;Spatial Awareness&#xff09…

Pytorch神经网络-元组/列表如何喂到神经网络中

&#x1f4da;博客主页&#xff1a;knighthood2001 ✨公众号&#xff1a;认知up吧 &#xff08;目前正在带领大家一起提升认知&#xff0c;感兴趣可以来围观一下&#xff09; &#x1f383;知识星球&#xff1a;【认知up吧|成长|副业】介绍 ❤️感谢大家点赞&#x1f44d;&…

设计编程网站集:生活部分:饮食+农业,植物(暂记)

这里写目录标题 植物相关综合教程**大型植物&#xff1a;****高大乔木&#xff08;Trees&#xff09;&#xff1a;** 具有坚硬的木质茎&#xff0c;通常高度超过6米。例如&#xff0c;橡树、松树、榉树等。松树梧桐 **灌木&#xff08;Shrubs&#xff09;&#xff1a;** 比乔木…

基于Jenkins + Argo 实现多集群的持续交付

作者&#xff1a;周靖峰&#xff0c;青云科技容器顾问&#xff0c;云原生爱好者&#xff0c;目前专注于 DevOps&#xff0c;云原生领域技术涉及 Kubernetes、KubeSphere、Argo。 前文概述 前面我们已经掌握了如何通过 Jenkins Argo CD 的方式实现单集群的持续交付&#xff0c…

基于Springboot的在线投稿系统+数据库+免费远程调试

项目介绍: Javaee项目&#xff0c;springboot项目。采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过Spring SpringBoot Mybatis VueMavenLayui来实现。MySQL数据库作为系统数据储存平台&a…

Java安全 反序列化(3) CC1链-TransformedMap版

Java安全 反序列化(3) CC1链-TransformedMap版 本文尝试从CC1的挖掘思路出发&#xff0c;理解CC1的实现原理 文章目录 Java安全 反序列化(3) CC1链-TransformedMap版配置jdk版本和源代码配置前记 为什么可以利用一.CC链中的命令执行我们可以尝试一下通过InvokerTransformer.tr…

分布式异步任务框架celery

Celery介绍 github地址&#xff1a;GitHub - celery/celery: Distributed Task Queue (development branch) 文档地址&#xff1a;Celery - Distributed Task Queue — Celery 5.3.6 documentation 1.1 Celery是什么 celery时一个灵活且可靠的处理大量消息的分布式系统&…

数据库关系运算理论:传统的集合运算概念解析

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢&#xff0c;在这里我会分享我的知识和经验。&am…

如何在wps的excel表格里面使用动态gif图

1、新建excel表格&#xff0c;粘贴gif图到表格里面&#xff0c;鼠标右键选择超链接。 找到源文件&#xff0c; 鼠标放到图片上的时候&#xff0c;待有个小手图标&#xff0c;双击鼠标可以放大看到动态gif图。 这种方式需要确保链接的原始文件位置和名称不能变化&#xff01;&a…

网工内推 | 云计算工程师,HCIE认证优先,最高18k*14薪

01 杭州中港科技有限公司 招聘岗位&#xff1a;云计算工程师 职责描述&#xff1a; 1、承担云计算相关工程交付、业务上云及售前测试&#xff0c;从事虚拟化、桌面云、存储、服务器、数据中心、大数据、相关产品的工程项目交付或协助项目交付。 2、承担云计算维护工程师职责&…

深入理解Mysql索引底层原理(看这一篇文章就够了)

目录 前言 1、Mysql 索引底层数据结构选型 1.1 哈希表&#xff08;Hash&#xff09; 1.2 二叉查找树(BST) 1.3 AVL 树和红黑树 1.4 B 树 1.5 B树 2、Innodb 引擎和 Myisam 引擎的实现 2.1 MyISAM 引擎的底层实现&#xff08;非聚集索引方式&#xff09; 2.2 Innodb 引…

L4 级自动驾驶汽车发展综述

摘要:为了减小交通事故概率、降低运营成本、提高运营效率,实现安全、环保的出行,自动驾驶 技术的发展已成为大势所趋,而搭配有L4 级自动驾驶系统的车辆是将车辆驾驶全部交给系统。据此,介绍了自动驾驶汽车的主流技术解决方案;分析了国内外L4 级自动驾驶汽车的已发布车型、…

Python 安装目录及虚拟环境详解

Python 安装目录 原文链接&#xff1a;https://blog.csdn.net/xhyue_0209/article/details/106661191 Python 虚拟环境 python 虚拟环境图解 python 虚拟环境配置与详情 原文链接&#xff1a;https://www.cnblogs.com/hhaostudy/p/17321646.html