Amuse .NET application for stable diffusion

news2025/1/23 10:26:07

Amuse

github地址:https://github.com/tianleiwu/Amuse

.NET application for stable diffusion, Leveraging OnnxStack, Amuse seamlessly integrates many StableDiffusion capabilities all within the .NET eco-system 

Welcome to Amuse!

Amuse is a professional and intuitive Windows UI for harnessing the capabilities of the ONNX (Open Neural Network Exchange) platform, allowing you to easily augment and enhance your creativity with the power of AI.

Amuse, written entirely in .NET, operates locally with a dependency-free architecture, providing a secure and private environment and eliminating the need for intricate setups or external dependencies such as Python. Unlike solutions reliant on external APIs, Amuse functions independently, ensuring privacy by operating offline. External connections are limited to the essential process of downloading models, preserving the security of your data and shielding your creative endeavors from external influences.

Experience the power of AI without compromise

Features

  • Paint To Image: Experience real-time AI-generated drawing-based art with stable diffusion.
  • Text To Image: Generate stunning images from text descriptions with AI-powered creativity.
  • Image To Image: Transform images seamlessly using advanced machine learning models.
  • Image Inpaint: Effortlessly fill in missing or damaged parts of images with intelligent inpainting.
  • Model Management: Install, download and manage all your models in a simple user interafce.

Amuse provides compatibility with a diverse set of models, including

  • StableDiffusion 1.5
  • StableDiffusion Inpaint
  • SDXL
  • SDXL Inpaint
  • SDXL-Turbo
  • LatentConsistency
  • LatentConsistency XL
  • Instaflow

Why Choose Amuse?

Amuse isn't just a tool; it's a gateway to a new realm of AI-enhanced creativity. Unlike traditional machine learning frameworks, Amuse is tailored for artistic expression and visual transformation. This Windows UI brings the power of AI to your fingertips, offering a unique experience in crafting AI-generated art.

Key Highlights

  • Intuitive AI-Enhanced Editing: Seamlessly edit and enhance images using advanced machine learning models.
  • Creative Freedom: Unleash your imagination with Text To Image, Image To Image, Image Inpaint, and Live Paint Stable Diffusion features, allowing you to explore novel ways of artistic expression.
  • Real-Time Results: Witness the magic unfold in real-time as Amuse applies live inference, providing instant feedback and empowering you to make creative decisions on the fly.

Amuse is not about building or deploying; it's about bringing AI directly into your creative process. Elevate your artistic endeavors with Amuse, the AI-augmented companion for visual storytellers and digital artists.

  • Paint To Image

Paint To Image is a cutting-edge image processing technique designed to revolutionize the creative process. This method allows users to paint on a canvas, transforming their artistic expressions into high-quality images while preserving the unique style and details of the original artwork. Harnessing the power of stable diffusion, Paint To Image opens up a realm of possibilities for artistic endeavors, enabling users to seamlessly translate their creative brushstrokes into visually stunning images. Whether it's digital art creation, stylized rendering, or other image manipulation tasks, Paint To Image delivers a versatile and intuitive solution for transforming painted canvases into captivating digital masterpieces.

Text To Image

Text To Image Stable Diffusion is a powerful machine learning technique that allows you to generate high-quality images from textual descriptions. It combines the capabilities of text understanding and image synthesis to convert natural language descriptions into visually coherent and meaningful images

Image To Image

Image To Image Stable Diffusion is an advanced image processing and generation method that excels in transforming one image into another while preserving the visual quality and structure of the original content. Using stable diffusion, this technique can perform a wide range of image-to-image tasks, such as style transfer, super-resolution, colorization, and more

Image Inpaint

Image inpainting is an image modification/restoration technique that intelligently fills in missing or damaged portions of an image while maintaining visual consistency. It's used for tasks like photo restoration and object removal, creating seamless and convincing results.

Model Manager

Discover the simplicity of our Model Manager – your all-in-one tool for stress-free model management. Easily navigate through an intuitive interface that takes the hassle out of deploying, updating, and monitoring your stable diffusion models. No need for configuration headaches; our Model Manager makes it a breeze to install new models. Stay in control effortlessly, and let your creative process evolve smoothly.

Getting Started
Get started now with our helpful documentation: https://github.com/Stackyard-AI/Amuse/blob/master/Docs/GettingStarted.md

Hardware Requirements

Compute Requirements

Generating results demands significant computational time. Below are the minimum requirements for accomplishing such tasks using Amuse

DeviceRequirement
CPUAny modern Intel/AMD
AMD GPURadeon HD 7000 series and above
IntelHD Integrated Graphics and above (4th-gen core)
NVIDIAGTX 600 series and above.

Memory Requirements

AI operations can be memory-intensive. Below is a small table outlining the minimum RAM or VRAM requirements for Amuse

ModelDevicePrecisionRAM/VRAM
Stable DiffusionGPU16~4GB
Stable DiffusionCPU/GPU32~8GB
SDXLCPU/GPU32~18GB

System Requirements

Amuse provides various builds tailored for specific hardware. DirectML is the default choice, offering the broadest compatibility across devices.

BuildDeviceRequirements
CPUCPUNone
DirectMLCPU, AMD GPU, Nvidia GPUAt least Windows10
CUDANvidia GPUCUDA 11 and cuDNN toolkit
TensorRTNvidia GPUCUDA 11 , cuDNN and TensorRT libraries

Realtime Requirements

Real-time stable diffusion introduces a novel concept and demands a substantial amount of resources. The table below showcases achievable speeds on commonly tested graphics cards

DeviceModelFPS
GTX 2080LCM_Dreamshaper_v7_Olive_Onnx1-2
RTX 3090LCM_Dreamshaper_v7_Olive_Onnx3-4

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1532396.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Maven】使用maven-jar、maven-assembly、maven-shade优雅的实现第三方依赖一同打Jar包

文章目录 一.前言二.常规Jar 打包:maven-jar-plugin三.Shade 打包:maven-shade-plugin1.如何使用2.将部分jar包添加或排除3.将依赖jar包内部资源添加或排除4.自动将所有不使用的类排除5.将依赖的类重命名并打包进来 (隔离方案)6.修…

使用ansible批量修改操作系统管理员账号密码

一、ansible server端配置 1、对于Linux主机配置免密登录ssh-copy-id -i ~/.ssh/id_rsa.pub rootremote_ip 2、在/etc/ansible/hosts文件中添加相应主机IP 3、对于Windows主机需要在/etc/ansible/hosts文件中进行以下配置 192.168.83.132 ansible_ssh_useradministrator an…

147 Linux 网络编程3 ,高并发服务器 --多路I/O转接服务器 - select

从前面的知识学习了如何通过socket ,多进程,多线程创建一个高并发服务器,但是在实际工作中,我们并不会用到前面的方法 去弄一个高并发服务器,有更加好用的方法,就是多路I/O转接器 零 多路I/O转接服务器 多…

电脑硬盘误删怎么恢复,误删硬盘的文件能不能再恢复

误删硬盘的文件能不能再恢复?很多朋友都很关心这个问题,不用担心,误删硬盘文件是可以恢复的!使用电脑不可避免会遇到一些糊涂的时刻,比如误删了重要的文件。当我们发现自己不小心将硬盘上的文件删除时,心里…

【STM32】读写BKP备份寄存器RTC实时时钟

目录 BKP BKP简介 BKP基本结构 BKP测试代码 RTC RTC简介 RTC框图 RTC基本结构 硬件电路 RTC操作注意事项 接线图 初始化 使用BKP解决只初始化一次时间 初始化参考代码 RTC设置时间 RTC读取时间 完整代码 MyRTC.c MyRTC.h main.c BKP BKP简介 BKP&#xff0…

Centos7部署单节点MongoDB(V4.2.25)

🎈 作者:互联网-小啊宇 🎈 简介: CSDN 运维领域创作者、阿里云专家博主。目前从事 Kubernetes运维相关工作,擅长Linux系统运维、开源监控软件维护、Kubernetes容器技术、CI/CD持续集成、自动化运维、开源软件部署维护…

Apipost数据模型上线,解决相似数据结构复用问题

在API设计和开发过程中,存在许多瓶颈,其中一个主要问题是在遇到相似数据结构的API时会产生重复性较多的工作:在每个API中都编写相同的数据,这不仅浪费时间和精力,还容易出错并降低API的可维护性。 为了解决这个问题&a…

乐优商城(九)数据同步RabbitMQ

1. 项目问题分析 现在项目中有三个独立的微服务: 商品微服务:原始数据保存在 MySQL 中,从 MySQL 中增删改查商品数据。搜索微服务:原始数据保存在 ES 的索引库中,从 ES 中查询商品数据。商品详情微服务:做…

【phoenix】flink程序执行phoenix,phoenix和flink-sql-connector-hbase包类不兼容

问题报错 Caused by: java.lang.RuntimeException: java.lang.RuntimeException: class org.apache.flink.hbase.shaded.org.apache.hadoop.hbase.client.ClusterStatusListener$MulticastListener not org.apache.hadoop.hbase.client.ClusterStatusListener$Listener如下图&…

语音识别教程:Whisper

语音识别教程:Whisper 一、前言 最近看国外教学视频的需求,有些不是很适应,找了找AI字幕效果也不是很好,遂打算基于Whisper和GPT做一个AI字幕给自己。 二、具体步骤 1、安装FFmpeg Windows: 进入 https://github.com/BtbN/FF…

使用光标精灵更换电脑鼠标光标样式,一键安装使用

想要让自己在使用电脑时更具个性化,让工作和娱乐更加愉快,改变你的电脑指针光标皮肤可能是一个简单而有效的方法。很多人或许并不清楚如何轻松地调整电脑光标样式,下面我就来分享一种简单的方法。 电脑光标在系统里通常只有几种默认图案&…

支付宝手机网站支付,微信扫描二维码支付

支付宝手机网站支付 支付宝文档 响应示例 <form name"punchout_form" method"post" action"https://openapi.alipay.com/gateway.do?charsetUTF-8&methodalipay.trade.wap.pay&formatjson&signERITJKEIJKJHKKKKKKKHJEREEEEEEEEEEE…

软件的安装与卸载(YUM)

YUM&#xff1a;yum 是一个方便的"应用商店"&#xff0c;你可以通过它轻松地安装、更新和删除软件包&#xff0c;就像从应用商店中下载和安装应用程序一样。&#xff08;这个得用root身份&#xff0c;普通用户权限不够&#xff09; 常用命令&#xff1a; 1.安装软件…

提供数字免疫力:采取整体方法来优化您的网络

采用数字技术已成为许多美国企业的关键竞争优势&#xff0c;导致其在与新部署的云解决方案的安全连接方面的投资不断增加。然而&#xff0c;随着越来越多的关键应用程序迁移到云端&#xff0c;公司保护其敏感数据和资源变得更具挑战性&#xff0c;因为这些资产现在超出了内部防…

计算机网络相关

OSI七层模型 各层功能&#xff1a; TCP/IP四层模型 应用层 传输层 网络层 网络接口层 访问一个URL的全过程 在浏览器中输入指定网页的 URL。 浏览器通过 DNS 协议&#xff0c;获取域名对应的 IP 地址。 浏览器根据 IP 地址和端口号&#xff0c;向目标服务器发起一个 TCP…

c++ 指针大小

C的一个指针占内存几个字节&#xff1f; 结论&#xff1a; 取决于是64位编译模式还是32位编译模式&#xff08;注意&#xff0c;和机器位数没有直接关系&#xff09; 在64位编译模式下&#xff0c;指针的占用内存大小是8字节在32位编译模式下&#xff0c;指针占用内存大小是4字…

11种创造型设计模式(下)

观察者模式 我们可以比喻观察者模式是一种类似广播的设计模式 介绍 观察者模式&#xff1a;对象之间多对一依赖的一种设计方案&#xff0c;被依赖的对象是Subject&#xff0c;依赖的对象是Observer&#xff0c;Subject通知Observer变化。 代码 说明&#xff1a; WeatherStat…

sdsl库编译安装和使用

1. 下载和编译 git clone https://github.com/simongog/sdsl-lite.git cd sdsl-lite# 建一个conda环境 激活环境&#xff0c;安装cmake。 ./install.sh /usr/local/ 2. 示例代码 #include <sdsl/suffix_arrays.hpp> #include <fstream>using namespace sdsl;int…

SpringCloud Gateway工作流程

Spring Cloud Gateway的工作流程 具体的流程&#xff1a; 用户发送请求到网关 请求断言&#xff0c;用户请求到达网关后&#xff0c;由Gateway Handler Mapping&#xff08;网关处理器映射&#xff09;进行Predicates&#xff08;断言&#xff09;&#xff0c;看一下哪一个符合…

抖音视频批量下载软件可导出视频分享链接|手机网页视频提取|视频爬虫采集工具

解锁抖音视频无水印批量下载新姿势&#xff01; 在快节奏的生活中&#xff0c;抖音作为时下最热门的短视频平台之一&#xff0c;吸引着广大用户的目光。而如何高效地获取喜欢的视频内容成为了许多人关注的焦点。Q:290615413现在&#xff0c;我们推出的抖音视频批量下载软件&…