[ C++ ] STL---list的使用指南

news2024/11/26 2:24:45

目录

list简介

list的常用接口

构造函数

赋值运算符重载

 迭代器

容量相关接口

元素访问接口

修改相关接口

头插push_front()

头删pop_front()

尾插push_back()

尾删pop_back()

insert()

erase()

list的迭代器失效


list简介

1. list是可以以O(1)的时间复杂度在任意位置进行插入和删除的序列式容器,list容器可以前后双向迭代

2. list的底层是带头双向循环链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素;

3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代

4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的效率高

5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息;

list官方文档:list - C++ Reference

list的常用接口

构造函数

//无参构造
list();

//n个值为val的元素构造list
list(size_t n, const T& val= T());

//拷贝构造
list(const list& x);

//迭代器区间[first last)中的元素构造list
template <class InputIterator>
list (InputIterator first, InputIterator last);
list<int> lt1;	// 构造int类型的空容器---无参构造
list<int> lt2(10, 0);// 构造含有10个0的int类型容器
list<int> lt3(lt2);// 拷贝构造lt3
string s("Hello Linux!");
list<char> lt4(s.begin(), s.end());//迭代器区间构造

赋值运算符重载

list<int> lt1;
list<int> lt2(10, 0);
lt1=lt2;//赋值运算符重载

 迭代器

list底层结构:带头双向循环链表,如下图

#include <iostream>
#include <list>
using namespace std;
int main()
{
	string s("Hello Linux!");
	list<int> lt(s.begin(), s.end());//迭代器区间构造

	//正向遍历
	list<int>::iterator it = lt.begin();
	while (it != lt.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;

	//反向遍历
	list<int>::reverse_iterator rit = lt.rbegin();
	while (rit != lt.rend())
	{
		cout << *rit << " ";
		++rit;
	}
	cout << endl;

	return 0;
}

 

容量相关接口

int main()
{
	list<int> lt;
	//尾插元素
	lt.push_back(1);
	lt.push_back(2);
	lt.push_back(3);
	lt.push_back(4);
	lt.push_back(5);
    //size()返回容器中有效数据的个数
	cout << lt.size() << endl;
    //empty()若容器为空返回非0,若容器非空返回0
	cout << lt.empty() << endl;
	return 0;
}

元素访问接口

front()返回list容器中的第一个结点中值的引用;

back()返回list容器中最后一个结点中值的引用;

int main()
{
	list<int> lt;
	//尾插元素
	lt.push_back(1);
	lt.push_back(2);
	lt.push_back(3);
	lt.push_back(4);
	lt.push_back(5);

	cout << lt.front() << endl;
	cout << lt.back() << endl;
	return 0;
}

 

修改相关接口

头插push_front()

头删pop_front()

尾插push_back()

尾删pop_back()

int main()
{
	list<int> lt;
	//尾插元素
	lt.push_back(1);
	lt.push_back(2);
	lt.push_back(3);
	lt.push_back(4);
	lt.push_back(5);
	list<int>::iterator it = lt.begin();
	while (it != lt.end())
	{
	    cout << *it << " ";
		++it;
	}
    cout << endl;
	//头插结点,结点中数据值为10
	lt.push_front(10);
	cout << lt.front() << endl;
	//头删首节点
	lt.pop_front();
	cout << lt.front() << endl;
    //尾插结点,结点中数据值为20
	lt.push_back(20);
	cout << lt.back() << endl;
	//尾删尾结点
	lt.pop_back();
	cout << lt.back() << endl;
	return 0;
}

insert()

//list容器中的position位置插入值为val的结点,返回刚刚插入到list中的元素的迭代器
iterator insert(iterator position, const T& val);

//从该list容器中的position位置开始,插入n个值为val的结点
void insert(iterator position, size_t n, const T& val);

//将迭代器区间[first,last)中的值以结点的形式插入到pos位置
template <class InputIterator>
void insert(iterator position, InputIterator first, InputIterator last);
int main()
{
	list<int> lt;
	lt.push_back(1);
	lt.push_back(2);
	lt.push_back(3);
	lt.push_back(4);
	lt.push_back(5);
	list<int>::iterator it = lt.begin();
	while (it != lt.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
	//list容器中的第二个位置插入值为10的结点
	it = lt.begin();
	++it;
	it=lt.insert(it, 10);
	for (list<int>::iterator it = lt.begin(); it != lt.end(); it++)
	{
		cout << *it << " ";
	}
	cout << endl;
    //返回刚刚插入到list中的元素的迭代器
	cout << *it << endl;
	return 0;
}

 

erase()

注意:返回值为指向待删元素的下一个元素的迭代器;

int main()
{
	list<int> lt;
	lt.push_back(1);
	lt.push_back(2);
	lt.push_back(3);
	lt.push_back(4);
	lt.push_back(5);
	list<int>::iterator it = lt.begin();
	++it;
	it=lt.erase(it);//删除第二个位置的元素
	for (list<int>::iterator it = lt.begin(); it != lt.end(); it++)
	{
		cout << *it << " ";
	}
	cout << endl;

	//返回待删元素的下一个元素的迭代器
	cout << *it << endl;

	return 0;
}

list的迭代器失效

迭代器本质为指针或者封装过的指针,迭代器失效迭代器所指向的节点的无效,即该节

点被释放

由于list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效;

list容器在插入数据时,原先迭代器it的指向没有被改变,则it未失效;

删除时list的迭代器失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响;

删除it位置处的数据时,迭代器it所指向的空间已经被释放,此时迭代器it是一个无效的迭代器,it需要重新赋值才可使用

欢迎大家批评指正,谢谢观看,码字不易,希望大家给个一键三连支持~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1531084.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ORACLE 上机操作3-1

sqlplus / as sysdba 显示parameter结构 SQL> set pause on SQL> desc v$parameter 显示系统静态参数 SQL> select name from v$parameter where isses_modifiable FALSE; 显示db_files是否可以用命令修改 SQL> select isses_modifiable, issys_modifiable, ismod…

使用 OpenAI 的 Embedding模型 构建知识向量库并进行相似搜索

OpenAI的embedding模型的使用 首先第一篇文章中探讨和使用了ChatGPT4的API-Key实现基础的多轮对话和流式输出&#xff0c;完成了对GPT-API的一个初探索&#xff0c;那第二步打算使用OpenAI的embedding模型来构建一个知识向量库&#xff0c;其实知识向量库本质上就是一个包含着一…

四、HarmonyOS应用开发-ArkTS开发语言介绍

目录 1、TypeScript快速入门 1.1、编程语言介绍 1.2、基础类型 1.3、条件语句 1.4、函数 1.5、类 1.6、模块 1.7、迭代器 2、ArkTs 基础&#xff08;浅析ArkTS的起源和演进&#xff09; 2.1、引言 2.2、JS 2.3、TS 2.4、ArkTS 2.5、下一步演进 3、ArkTs 开发实践…

【Linux】网络基础一

网络基础一 1.计算机网络背景1.1 网络发展1.2 认识 “协议” 2.网络协议初识2.1 协议分层2.2 OSI七层模型2.3 TCP/IP五层(或四层)模型 3. 网络传输基本流程3.1 网络传输流程图 4.数据包封装和分用5.网络中的地址管理 从今天开始我们将要从系统横跨到网络的学习了&#xff0c;因…

微信支付宝--充ChatGPTPLUS/openAI key

ChatGPT是人工智能技术驱动的自然语言处理工具&#xff0c;它能够基于在预训练阶段所见的模式和统计规律&#xff0c;来生成回答&#xff0c;还能根据聊天的上下文进行互动&#xff0c;真正像人类一样来聊天交流&#xff0c;甚至能完成撰写论文、邮件、脚本、文案、翻译、代码等…

MFC界面美化第四篇----自绘list列表(重绘列表)

1.前言 最近发现读者对我的mfc美化的专栏比较感兴趣&#xff0c;因此在这里进行续写&#xff0c;这里我会计划写几个连续的篇章&#xff0c;包括对MFC按钮的美化&#xff0c;菜单栏的美化&#xff0c;标题栏的美化&#xff0c;list列表的美化&#xff0c;直到最后形成一个完整…

【Python】反编译PyInstaller打包的exe

查看exe基本信息 需要反编译的exe 查看exe文件的打包工具&#xff0c;查看exe信息的软件叫Detect It Easy(查壳工具) 由图我们可以看出当前选中的exe文件是由名叫PyInstaller的打包工具打包好的exe 反编译 exe反编译工具&#xff1a;pyinstxtractor.py 使用方法 python py…

VMWare虚拟机使用openmediavault搭建NAS服务器完整步聚

下载: gopenmediavault - The open network attached storage solution 下载好openmediavault的ISO镜像后,打开虚拟机并安装 系统类型选择Debian 启动虚拟机并安装openmediavault 选择中文 地区选中国 键盘配置选汉语 开始安装 配置网络信息 配置root密码 确认密码 系统安装中…

spark基本原理UI界面解读

这里是引用 1 八股文 1.1 基本原理 driver节点是整个应用程序的指挥所 指挥官是sparkcontext 环境&#xff1a;构建一个集群 应用程序提交 确定主节点&#xff0c;确定指挥所driver&#xff0c;确定指挥官sparkcontext sparkcontext会向资源管理器申请资源 会将作业分…

英伟达出品:全球最强大芯片Blackwell来了!采用4nm制程,2080 亿个晶体管组,支持10万亿参数模型

更多精彩内容在 美国加利福尼亚州圣何塞 —— 2024 年 3 月 18 日 —— NVIDIA 于今日宣布推出 NVIDIA Blackwell 平台以赋能计算新时代。该平台可使世界各地的机构都能够在万亿参数的大语言模型&#xff08;LLM&#xff09;上构建和运行实时生成式 AI&#xff0c;其成本和能耗…

机器视觉系统选型-精度计算

eg&#xff1a;1.康耐视500w相机拍照&#xff0c;视野为50mm40mm&#xff0c;所使用的视觉工具精度为个像素&#xff0c;求测量精度&#xff1f;&#xff08;500w相机分辨率为25921944&#xff09; 相机精度:(即像素分辨率) 相机精度50mm/25920.0193mm 测量精度&#xff1a;测量…

Source Insight使用-添加新的文件类型

目录 遇到的问题解决方法结果 遇到的问题 在Source Insight中我们通常查看.c和.h文件&#xff0c;当使用其查看.java 或者.hal等类型文件时&#xff0c;发现找不到 解决方法 以添加.hal文件为例: 选择Options 下面的File Type Options… 选项。 点击左侧的 “C/C Source F…

mysql索引实现

什么是索引失效 在MySQL中&#xff0c;索引失效指的是查询语句无法有效地使用索引&#xff0c;而必须进行全表扫描。索引失效可能会导致查询性能下降&#xff0c;特别是在处理大量数据时。 索引失效的原因 1.索引列进行了运算或函数操作 如果对索引列进行了运算或使用了函数…

Linux命令进程管理工具top、ps、jps和tar以及守护进程nohup

进程管理工具top ps 概述 top 和 ps 是 Linux 系统中两个非常重要的用于管理和监控进程的命令工具。以下是它们的主要功能和区别&#xff1a; top&#xff1a; 动态视图&#xff1a;top 提供了一个实时动态更新的视图&#xff0c;能够持续显示系统中当前正在运行的进程信息及其…

软考 网工 每日学习打卡 2024/3/19

学习内容 第8章 网络安全 本章主要讲解网络安全方面的基础知识和应用技术。针对考试应该掌握诸如数据加密、报文认 证、数字签名等基本理论&#xff0c;在此基础上深入理解网络安全协议的工作原理&#xff0c;并能够针对具体的 网络系统设计和实现简单的安全解决方案。 本章共有…

C++ —— 类和对象(终)

目录 1. 日期类的实现 1.1 前置 和 后置 重载 1.2 >> 和 << 的重载 2. const 成员 3. 取地址及const取地址操作符重载 4. 再谈构造函数 4.1 构造函数体赋值 4.2 初始化列表 4.3 隐式类型转换 4.4 explict 关键字 5. static 成员 5.1 概念 5.2 特性 …

Java 的强引用、弱引用、软引用、虚引用

1、强引用&#xff08;StrongReference&#xff09; 强引用是使用最普遍的引用。如果一个对象具有强引用&#xff0c;那垃圾回收器绝不会回收它。如下&#xff1a; Object onew Object(); // 强引用 当内存空间不足&#xff0c;Java虚拟机宁愿抛出OutOfMemoryError错误&am…

Java多线程实战-CompletableFuture异步编程优化查询接口响应速度

&#x1f3f7;️个人主页&#xff1a;牵着猫散步的鼠鼠 &#x1f3f7;️系列专栏&#xff1a;Java全栈-专栏 &#x1f3f7;️本系列源码仓库&#xff1a;多线程并发编程学习的多个代码片段(github) &#x1f3f7;️个人学习笔记&#xff0c;若有缺误&#xff0c;欢迎评论区指正…

Spring 6.0和SpringBoot 3.0有什么新特性?

Spring在2022年相继推出了Spring Framework 6.0和SpringBoot 3.0&#xff0c;Spring把这次升级称之为新一代框架的开始&#xff0c;下一个10年的新开端 一、问题解析 主要更新内容是以下几个&#xff1a; ● A Java 17 baseline ● Support for Jakarta EE 10 with an EE 9 ba…

永磁同步电机无位置传感器系列(1)——非线性磁链观测器的仿真复现过程

无位置传感器控制&#xff0c;这个方向也是电机控制里面的大热门了。最近在看PLL&#xff0c;中国电机有一篇ESO-PLL获得了23年的高影响力论文&#xff0c;标题如下。因为这篇ESO-PLL需要用到下面这篇英文文献的转子位置观测器&#xff0c;想着就先把这个观测器的文章给复现了。…