MATLAB环境下基于改进最大相关峭度解卷积的滚动轴承故障诊断

news2024/11/29 18:23:17

相关峭度解卷积MCKD是一种新的解卷积方法,其设计了一个新的目标函数—相关峭度,并以此为优化目标设计一系列的FIR滤波器,为实现最好的效果,需要从中找到最优滤波器并最终实现对信号中噪声的抑制和对信号中冲击成分的突出的目的。MCKD能够以重现轴承信号中的周期特性为目标,最大限度地突出含噪信号中的冲击成分,这对于轴承早期故障的故障诊断来说具有重要意义。比如可以将CEEMD和MCKD相结合,即可以解决CEEMD分解后无法提取出淹没在背景噪声中微弱信号特征的问题,又保持了信号的完备性,避免了有用信息的损失。

MCKD算法充分考虑了振动信号中所蕴含的周期性瞬态冲击特性,通过迭代方式以解卷积信号相关峭度最大化为目标来设计逆滤波器,恢复信号中被强烈噪声所掩盖的连续性脉冲。

MCKD算法中涉及的主要参数有滤波器长度L、解卷积周期T、移位数M。滤波器长度L决定了滤波器的分辨率,影响着滤波器的结构和滤波效果。解卷积周期T指的是振动信号中相邻两个冲击序列之间的数据点数,由轴承的结构参数、实际转速和采样频率共同决定,解卷积周期的准确性对故障诊断效果有着至关重要的影响,对故障冲击信号周期估计误差越大,解卷积效果越差。移位数M影响着振动信号解卷积后突出的冲击脉冲个数。MCKD算法本质上是以解卷积信号相关峭度最大为目标设计FIR滤波器。由于滤波器的设计受滤波器长度L的影响,相关峭度的计算需要预先确定解卷积周期T和和移位数M。因此,L、T、M的取值将影响MCKD算法的故障特征提取效果。

鉴于此,提出一种改进的MCKD算法,该算法利用迭代算法估计信号周期,以解决盲解卷积方法中的先验周期问题,可迁移至金融时间序列,地震信号,机械振动信号,语音信号,声信号等一维时间序列信号,出图如下:

代码可通过知乎学术咨询获得:MATLAB环境下基于改进最大相关峭度解卷积的滚动轴承故障诊断


https://www.e/792359672131756032工学博士,担任《Mechanical System and Signal Processing》审稿专家,担任《中国电机工程学报》优秀审稿专家,《控制与决策》,《系统工程与电子技术》,《电力系统保护与控制》,《宇航学报》等EI期刊审稿专家。

擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1529763.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

O2OA红头文件流转与O2OA版式公文编辑器基本使用

O2OA开发平台在流程管理中,提供了符合国家党政机关公文格式标准(GB/T 9704—2012)的公文编辑组件,可以让用户在包含公文管理的项目实施过程中,轻松地实现标准化公文格式的在线编辑、痕迹保留、手写签批等功能。并且可以…

Spire.PDF for .NET【文档操作】演示:将PDF拆分为多个PDF文件

Spire.PDF for .NET 是一款独立 PDF 控件,用于 .NET 程序中创建、编辑和操作 PDF 文档。使用 Spire.PDF 类库,开发人员可以新建一个 PDF 文档或者对现有的 PDF 文档进行处理,且无需安装 Adobe Acrobat。 E-iceblue 功能类库Spire 系列文档处…

基于Springcloud+Vue校园招聘系统 Eureka分布式微服务

以行动研究为主,辅以文献法、教育实验法和个案研究法等方法相结合的研究方法。在研究方法,遵循软件工程中软件生命周期的规则。概括来讲可以划分成三大步:系统规划、系统开发和系统运行维护。将其上述步骤细分下来,可以分为以下8小…

[Qt学习笔记]Qt实现鼠标点击或移动时改变鼠标的样式以及自定义鼠标样式

1、鼠标样式介绍以及对应函数 在Qt中大概有20种左右的内置鼠标样式,一般使用setCursor(Qt::CursorShape shape)来进行设置,一般常用的有标准箭头、手型,双箭头等等形状,对于不同的操作系统下,鼠标的样式显示会略有差别…

java Flink(四十三)Flink Interval Join源码解析以及简单实例

背景 之前我们在一片文章里简单介绍过Flink的多流合并算子 java Flink(三十六)Flink多流合并算子UNION、CONNECT、CoGroup、Join 今天我们通过Flink 1.14的源码对Flink的Interval Join进行深入的理解。 Interval Join不是两个窗口做关联,…

智慧城市的发展趋势与挑战:未来展望

随着信息技术的飞速发展,智慧城市已成为现代城市发展的重要方向。智慧城市通过集成应用先进的信息通信技术,实现城市管理、服务、运行的智能化,为城市的可持续发展注入了新的活力。然而,在智慧城市的发展过程中,也面临…

C语言——结构体自定义类型

目录 结构体类型 声明结构体 结构体的特殊声明 创建结构体变量和初始化结构体变量 结构体的自引用 结构体内存对齐 对齐规则 内存对齐存在意义 默认对齐数的修改 结构体传参 结构体实现位段 了解位段是什么 位段的内存分配 位段有跨平台的问题及使用注意事项 C语言…

电脑插上网线之后仍然没网络怎么办?

前言 有小伙伴在使用Windows系统的时候,经常会遇到电脑没网络,但又不知道具体怎么调整才好。 本篇内容适合插网线和使用Wi-Fi的小伙伴,文章本质上是重置电脑的网络设置。 注意事项:网络重置操作会让已连接过的wifi密码丢失&…

51单片机学习笔记7 串转并操作方法

51单片机学习笔记7 串转并操作方法 一、串转并操作简介二、74HC595介绍1. **功能**:2. **引脚**:3. **工作原理**:4. 开发板原理图(1)8*8 LED点阵:(2)74HC595 串转并: 三…

【PyTorch][chapter 22][李宏毅深度学习][ WGAN]【实战三】

前言: 本篇主要讲两个WGAN的两个例子: 1 高斯混合模型 WGAN实现 2 MNIST 手写数字识别 -WGAN 实现 WGAN 训练起来蛮麻烦的,如果要获得好的效果很多超参数需要手动设置 1: 噪声的维度 2: 学习率 3: 生成器,鉴别器…

Bert的一些理解

Bert的一些理解 Masked Language Model (MLM)Next Sentence Prediction (NSP)总结 参考链接1 参考链接2 BERT 模型的训练数据集通常是以预训练任务的形式来构建的,其中包括两个主要任务:Masked Language Model (MLM) 和 Next Sentence Prediction (NSP)。…

使用Vscode连接云进行前端开发

使用Vscode连接云进行前端开发 1、ssh连接腾讯云 本人使用的是腾讯云。 然后vscode,用最新版,插件选择remote ssh,或者remote xxx下载过来。 然后点击远程资源管理器,选择SSH通道 然后输入命令如下。 ssh rootip然后输入密码 腾讯云应该…

Linux环境下使用Eclipse Paho C 实现(MQTT Client)异步订阅Message

目录 概述 1 认识Eclipse Paho C 1.1 paho.mqtt.c简介 1.2 下载和安装paho.mqtt.c 1.3 一些重要的函数 2 异步订阅消息实现 2.1 编写异步订阅消息功能 2.1.1 初始化MQTT参数 2.1.2 初始化函数 2.1.3 订阅消息的回调函数 2.1.4 取消订阅Topic 2.2 编译代码和测试 3…

Lvs+keepalived+nginx搭建高可用负载均衡集群

环境配置 master主机192.168.199.149,虚拟IP192.168.199.148 back备机192.168.199.150 真实服务器1 192.168.199.155 真实服务器2 192.168.199.156 关闭防火墙和selinux master配置(149) 添加虚拟IP ip addr add 192.168.199.148/24 …

web前端之多种方式实现switch滑块功能、动态设置css变量、after伪元素、选择器、has伪类

MENU 效果图htmlcsshtmlcssJS 效果图 htmlcss html <div class"s"><input type"checkbox" id"si" class"si"><label for"si" class"sl"></label> </div>style * {margin: 0;pad…

IO多路复用、域套接字

思维导图 面试题TCP通信中的三次握手和四次&#xff1a; 客户端像向服务器端发送连接请求 服务器应答连接请求 客户端与服务器简历连接 客户端向服务器发送断开请求 服务器应答断开请求 服务器请求关闭连接 客户端发送确认应答 并行和并发的区别&#xff1a; 并行&#xff1a…

使用ChatGPT高效完成简历制作[中篇3]-有爱AI实战教程(十)

演示站点&#xff1a; https://ai.uaai.cn 对话模块 官方论坛&#xff1a; www.jingyuai.com 京娱AI 一、导读&#xff1a; 在使用 ChatGPT 时&#xff0c;当你给的指令越精确&#xff0c;它的回答会越到位&#xff0c;举例来说&#xff0c;假如你要请它帮忙写文案&#xff0c;…

【Linux】线程封装 | 线程互斥 | 基于阻塞队列的生产消费者模型

文章目录 一、线程封装二、Linux线程互斥进程线程间的互斥相关背景概念互斥量mutex为什么上面的抢票代码可能无法获得正确结果&#xff1f;&#xff08;票数为负&#xff09;互斥量的接口1. 初始化互斥量方法一&#xff1a;静态分配方法二&#xff1a;动态分配: 2. 销毁互斥量3…

性能优化(CPU优化技术)-NEON指令详解

原文来自ARM SIMD 指令集&#xff1a;NEON 简介 &#x1f3ac;个人简介&#xff1a;一个全栈工程师的升级之路&#xff01; &#x1f4cb;个人专栏&#xff1a;高性能&#xff08;HPC&#xff09;开发基础教程 &#x1f380;CSDN主页 发狂的小花 &#x1f304;人生秘诀&#xf…

如何让自己上百度百科?个人百科词条创建

百度百科&#xff0c;作为我国最大的中文百科全书&#xff0c;其影响力和权威性不言而喻。能够登上百度百科&#xff0c;意味着个人的知名度、成就和社会影响力得到了广泛认可。那么&#xff0c;如何才能让自己上百度百科呢&#xff1f;接下来伯乐网络传媒就来给大家讲解一下。…