大O指Big Operation,可以用来表示时间复杂度和空间复杂度
常见大 O O O 表示法
按时间复杂度从低到高
- 黑色横线 O ( 1 ) O(1) O(1),常量时间,意味着算法时间并不随数据规模而变化
- 绿色 O ( l o g ( n ) ) O(log(n)) O(log(n)),对数时间
- 蓝色 O ( n ) O(n) O(n),线性时间,算法时间与数据规模成正比
- 橙色 O ( n ∗ l o g ( n ) ) O(n*log(n)) O(n∗log(n)),拟线性时间
- 红色 O ( n 2 ) O(n^2) O(n2) 平方时间
- 黑色朝上 O ( 2 n ) O(2^n) O(2n) 指数时间
- 没画出来的 O ( n ! ) O(n!) O(n!)
其他概念
渐进下界
渐进下界(asymptotic lower bound):从某个常数 n 0 n_0 n0开始, c ∗ g ( n ) c*g(n) c∗g(n) 总是位于 f ( n ) f(n) f(n) 下方,那么记作 Ω ( g ( n ) ) \Omega(g(n)) Ω(g(n))
渐进紧界
渐进紧界(asymptotic tight bounds):从某个常数 n 0 n_0 n0开始, f ( n ) f(n) f(n) 总是在 c 1 ∗ g ( n ) c_1*g(n) c1∗g(n) 和 $