动态规划章节理论基础:
https://programmercarl.com/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html
完全背包理论基础:
https://programmercarl.com/%E8%83%8C%E5%8C%85%E9%97%AE%E9%A2%98%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80%E5%AE%8C%E5%85%A8%E8%83%8C%E5%8C%85.html
139.单词拆分
题目链接:https://leetcode.cn/problems/word-break/
思路:
单词就是物品,字符串s就是背包,单词能否组成字符串s,就是问物品能不能把背包装满。
拆分时可以重复使用字典中的单词,说明就是一个完全背包!
动规五部曲:
(1)确定dp数组以及下标含义
dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词。
(2)确定递归公式
如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true。(j < i )。
所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true。
(3)dp数组初始化
从递推公式中可以看出,dp[i] 的状态依靠 dp[j]是否为true,那么dp[0]就是递推的根基,dp[0]一定要为true,否则递推下去后面都都是false了。
那么dp[0]有没有意义呢?
dp[0]表示如果字符串为空的话,说明出现在字典里。
但题目中说了“给定一个非空字符串 s” 所以测试数据中不会出现i为0的情况,那么dp[0]初始为true完全就是为了推导公式。
(4)确定遍历顺序
而本题其实我们求的是排列数,为什么呢。 拿 s = “applepenapple”, wordDict = [“apple”, “pen”] 举例。
“apple”, “pen” 是物品,那么我们要求 物品的组合一定是 “apple” + “pen” + “apple” 才能组成 “applepenapple”。
“apple” + “apple” + “pen” 或者 “pen” + “apple” + “apple” 是不可以的,那么我们就是强调物品之间顺序。
所以说,本题一定是 先遍历 背包,再遍历物品。
(5)举例推导dp数组
以输入: s = “leetcode”, wordDict = [“leet”, “code”]为例,dp状态如图:
dp[s.size()]就是最终结果。
代码:
class Solution {
public int change(int amount, int[] coins) {
int len = coins.length;
int[]dp = new int[amount+1];
dp[0] = 1;
for(int i=0; i< len;i++){
for(int j=coins[i];j<= amount;j++){
// dp[j] = Math.max(dp[j],dp[j-coins[i]]+1);
// 装满背包有几种方法,公式都是:dp[j] += dp[j - nums[i]];
// 和494.目标和这道题的递推公式是一样的
dp[j] = dp[j] + dp[j-coins[i]];
}
}
return dp[amount];
}
}