研究人员发现 OpenAI ChatGPT、Google Gemini 的漏洞

news2024/11/15 15:40:14

自 OpenAI 推出 ChatGPT 以来,生成式 AI 聊天机器人的数量及其在企业中的采用率在一年多时间里呈爆炸式增长,但网络安全专业人士的担忧也随之增加,他们不仅担心威胁组织对新兴技术的使用,还担心大型网络的安全性及模型(LLM)本身。

网络安全供应商的研究人员分别发现了 ChatGPT 和 Gemini 中的漏洞,Gemini 是谷歌的生成式人工智能聊天机器人,直到上个月还被称为 Bard。

API 安全公司 Salt Security 公布了ChatGPT 插件中的安全漏洞,这些漏洞可能会让不良行为者访问第三方网站上的帐户和敏感数据。在收到有关漏洞的通知后,OpenAI 和第三方供应商修复了这些问题。没有迹象表明这些缺陷被广泛利用。

人工智能安全供应商 HiddenLayer 在一份报告中表示,不良行为者可以操纵 Gemini 的 LLM 泄露系统提示,使其遭受更有针对性的攻击,从而制造错误信息,这是美国和其他国家为高水平做好准备时的一个关键问题。今年的个人资料选举 - 并通过 Google Workspace 间接注入来伤害用户。

随着企业加大对生成式人工智能工具的采用力度,Salt Security 的研究机构 Salt Labs 和 HiddenLayer 的研究是对安全性的重要检查。云安全公司赞助的一项 IDC 调查发现,三分之二的受访者表示,他们已经在公司的任一部门或更广泛的范围内部署了生成式人工智能。

Box 在 1 月份的一篇博客文章中写道:“随着组织寻求技术来实现业务流程自动化、提高员工生产力和降低成本,企业对人工智能的采用正在推动这些增长趋势。 ”

鉴于此,密切关注安全性非常重要。

生成式人工智能给企业带来了很多好处,最终几乎所有公司都会以某种方式使用生成式人工智能。我们支持旨在引入新功能的公司。只要安全地完成,这就是一件好事。然而,这一领域的快速发展带来了巨大的网络安全差距,需要比平时更多的关注。

生成式人工智能生态系统

在 ChatGPT 的报告中,该框架和其他生成式 AI 框架的早期版本仅保存在训练过程中可用的数据,这限制了可以向他们提出的问题。那已经改变了。

为了解决这些问题,所有主要的生成式人工智能平台都包含生成式人工智能生态系统的概念,它允许生成式人工智能平台与外部服务之间的连接和数据交换。这些服务可以是任何东西,从简单的互联网搜索到特定服务的连接,如 GitHub、Google Drive、Saleforce 等。

通过这一点,ChatGPT 不仅仅是一个对话式聊天机器人,而是一个“可以在广泛的平台上运行、简化工作流程并提供更具互动性和生产力的体验的强大工具。” 与生成式人工智能的大规模增长类似,这些外部连接获得了很大的吸引力,并且很快扩展(并且仍在增长)以包括数百个不同的外部连接。

生成式人工智能生态系统概念使 ChatGPT 和其他聊天机器人通过其插件入口点对第三方构成威胁。这些插件允许 ChatGPT 将敏感数据发送到第三方网站,有时还允许访问 Google Drive、GitHub 和其他地方的私人帐户。

ChatGPT 的缺陷

Salt Labs 研究人员在 ChatGPT 插件中发现了三种类型的缺陷,其中一种存在于 ChatGPT 中。当用户安装新插件时,聊天机器人会将其重定向到插件网站以获取必须经过用户批准的代码。使用 OAuth 批准的代码,ChatGPT 会自动安装插件,并可以代表用户与插件进行交互。黑客可以利用该功能并通过新的恶意插件提供代码批准,让攻击者在受害者的帐户上安装其凭据。

由于攻击者是该插件的所有者,因此他可以看到受害者的私人聊天数据,其中可能包括凭据、密码或其他敏感数据。

PluginLab 中的另一个缺陷(开发人员和组织用它来开发 ChatGPT 插件)没有正确验证用户帐户。它可能允许攻击者插入另一个用户 ID 并获取代表受害者的代码,从而允许他们接管帐户。第三个漏洞是在多个插件中发现的,这些插件不会将攻击者发送给受害者的经过验证的 URL 发送给受害者,从而让他们接管帐户。

API 攻击的威胁日益严重

总体而言,针对 API 的攻击是一个日益严重的问题,Salt 的 2023 年第一季度 API 安全报告发现,针对 Salt 客户的攻击比前六个月增加了 400%。API 是每个现代应用程序的核心,生成式人工智能也不例外。

这些 API(确切的通信)经常暴露给攻击者,让攻击者看到来自服务器的任何请求和响应,这是一个与 LLM 相关的新攻击面。

Salt 在 ChatGPT 中的发现适用于任何生成式 AI 平台,尽管重点是 OpenAI 的聊天机器人。HiddenLayer 研究人员在关于 Gemini 中发现的缺陷的报告中也有类似的信息,其中包括 LLM 提示泄露和越狱。

Gemini

Gemini 具有三种型号尺寸:Gemini Nano 适用于设备上处理等轻量级应用;Pro,用于扩展广泛的任务;Ultra,用于复杂的任务。它与 OpenAI 的 GPT-4 竞争。HiddenLayer 的大部分测试都是在 Gemini Pro 上运行的。

Gemini Pro 模型目前为开发人员提供了灵活、可访问的人工智能模型。其均衡的性能和功能使其非常适合为聊天机器人、内容生成工具、搜索改进系统以及其他需要自然语言理解和生成的应用程序提供支持。

第一个漏洞导致系统提示泄露,这是给 LLM 的指令。如果黑客对它们进行逆向工程以窃取它们或创建更有效的攻击或从中窃取敏感信息(例如密码),则即时泄漏是危险的。HiddenLayer 研究人员能够操纵提示绕过护栏并获得准确的指令。

这种攻击利用了 LLM 的逆缩放特性,随着 LLM 规模越来越大,对现有的每一个攻击示例进行微调变得极其困难。因此,模型往往容易受到同义词攻击,而原始开发人员可能没有对它们进行过训练。

他们还能够使用重置模拟方法让系统从提示中泄漏信息。

越狱LLM

此外,研究人员还可以通过使用虚构的故事来操纵 Gemini Pro,以绕过谷歌为防止不良行为者利用法学硕士越狱产生有关选举的错误信息而设置的防御措施。

这次越狱攻击表明,尽管该模型已被调整为拒绝任何有关选举的错误信息(尝试一下!),但它无法防止所有错误信息。

研究人员进行演示的同一周,谷歌概述了今年在美国和印度为防止错误信息和其他与选举相关的威胁而采取的措施。

HiddenLayer 还成功地对 Gemini Ultra 使用了相同的越狱攻击,包括让聊天机器人创建热接线汽车的指令,并提取部分系统提示,不过 这是一种“稍微调整的方法”。研究人员发现了 Ultra 中的一些其他漏洞,这些漏洞展示了反向扩展效应,其中最大的漏洞是利用 LLM 推理能力的多步骤越狱。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1527476.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

开设新量子计算中心!IonQ 全力加速量子商业化

内容来源:量子前哨(ID:Qforepost) 编辑丨慕一 编译/排版丨浪味仙 沛贤 深度好文:1000字丨8分钟阅读 近日,量子计算公司IonQ对外宣布,将在华盛顿开设一家新量子中心。公告里还提出&#xff0c…

【随笔】汇编(寄存器、内存模型、常用指令、语法)

文章目录 一、简介二、寄存器三、内存模型3.1 Heap3.2 Stack 四、指令4.1 示例4.2 语法4.3常用指令 一、简介 汇编语言(英语:assembly language)是任何一种用于电子计算机、微处理器、微控制器,或其他可编程器件的低级语言。在不…

HUAWEI Pocket 2外屏实时查看App动态,小小窗口大便捷

当我们点外卖、等候飞机时,不少人习惯频繁点亮手机查看外卖配送进度、值机时间。 这时候,手机亮屏、解锁、打开对应App查看状态对于我们来说就显得非常繁琐。而华为Pocket 2结合HarmonyOS 4系统的实况窗功能,与常显外屏的搭配使用&#xff0…

PTA黑暗料理

小明最近正开发一个料理手游。游戏中仓库里有一些原材料,每个原材料都不相同。在游戏后台,每个原材料由两个不同整数构成。当烹饪锅有至少N(N≥2)个原材料且其中有N个原材料正好包含N个不同的整数(即这N个整数每个出现…

【Java 数据结构】Map和Set的介绍

目录 1、Map 和 Set 的概念 2、模型 3、Map 的学习 3.1 关于 Map.Entry 3.2 Map 的常用方法 4、Set 的常用方法 5、 Map 和 Set 的注意点 1、Map 和 Set 的概念 Java 提供了 Map 和 Set 的接口,是一种专门用来进行搜索的容器或数据结构,而他搜索…

【Maven篇】解锁 Maven 的智慧:依赖冲突纷争下的版本调停者

缘起 软件开发世界是一个充满无限可能的领域,但同时也伴随着诸多挑战。其中之一,就是依赖冲突的问题。在这篇文章中,我们将揭开 Maven 这位“版本调停者”的神秘面纱,深入探讨如何在版本纠纷的盛宴中解决依赖问题。 Maven&#…

Ansible的介绍、安装与部署

Ansible的介绍、安装与部署 文章目录 Ansible的介绍、安装与部署1. 介绍 Ansible1.1 什么是 Ansible?1.2 Ansible 无需代理1.3 Ansible 方式 2. 安装需求2.1 控制节点2.2 受管主机2.3 基于Windows的受管主机2.4 受管网络设备 3. 管理Ansible配置文件3.1 配置Ansible3.2 配置文…

JAVA后端调用OpenAI接口 实现打字机效果(SSE)

SSE SSE(Server-Sent Events,服务器发送事件)是一种基于HTTP协议的通信技术,它允许服务器持续地将数据推送给客户端,而无需客户端发起请求。这种通信方式通常用于实时性要求较高的场景,如实时更新、通知、或…

AJAX-原理XMLHttpRequest

定义 使用 查询参数 定义:浏览器提供给服务器的额外信息,让服务器返回浏览器想要的数据 语法:http://xxxx.com/xxx/xxx?参数名1值1&参数名2值2

敏捷开发——elementUI/Vue使用/服务器部署

1. 创建vue项目 2. 安装element-ui组件库 npm i -S element-ui或 npm install element-ui3. 在main.js中导入element-ui组件 import ElementUI from element-ui import element-ui/lib/theme-chalk/index.css Vue.use(ElementUI)4. 运行 npm run serve后可以使用 ctrc终止进…

C/C++动态链接库的封装和调用

1 引言 静态链接库是在编译时被链接到程序中的库文件,在编译时,链接器将静态链接库的代码和数据复制到最终的可执行文件中。动态链接库是在程序运行时加载的库文件,在编译时,可执行文件只包含对动态链接库的引用,而不…

软件杯 深度学习 python opencv 火焰检测识别 火灾检测

文章目录 0 前言1 基于YOLO的火焰检测与识别2 课题背景3 卷积神经网络3.1 卷积层3.2 池化层3.3 激活函数:3.4 全连接层3.5 使用tensorflow中keras模块实现卷积神经网络 4 YOLOV54.1 网络架构图4.2 输入端4.3 基准网络4.4 Neck网络4.5 Head输出层 5 数据集准备5.1 数…

leetcode 3081

leetcode 3081 题目 例子 思路 使用minheap 记录字符出现频次 代码 class Solution { public:string minimizeStringValue(string s) {int freq[26]{};for(char c: s){if(c ! ?){freq[c-a];}}//std::greater<> 比较器比较 pair 对象时&#xff0c;默认比较规则是先比…

leetcode刷题(javaScript)——动态规划相关场景题总结

动态规划在 JavaScript 刷题中有一定的难度&#xff0c;但也是非常常见和重要的算法思想。动态规划通常适用于需要求解最优解、最大值、最小值等问题的场景&#xff0c;可以将复杂问题拆分成子问题&#xff0c;通过存储子问题的解来避免重复计算&#xff0c;从而提高效率。 理解…

elk收集k8s微服务日志

一、前言 使用filebeat自动发现收集k8s的pod日志&#xff0c;这里分别收集前端的nginx日志&#xff0c;还有后端的服务java日志&#xff0c;所有格式都是用json格式&#xff0c;建议还是需要让开发人员去输出java的日志为json&#xff0c;logstash分割java日志为json格式&#…

Transformer的前世今生 day01(预训练、统计语言模型)

预训练 在相似任务中&#xff0c;由于神经网络模型的浅层是通用的&#xff0c;如下图&#xff1a; 所以当我们的数据集不够大&#xff0c;不能产生性能良好的模型时&#xff0c;可以尝试让模型B在用模型A的浅层基础上&#xff0c;深层的部分自己生成参数&#xff0c;减小数据集…

京津冀自动驾驶产业盛会“2024北京国际自动驾驶技术展览会”

随着科技的飞速发展&#xff0c;自动驾驶技术成为了汽车产业变革的热点和前沿。智能化、网联化已经成为推动汽车产业创新发展的重要力量&#xff0c;而自动驾驶技术则是其中的关键一环。它不仅能够提高道路安全性、缓解交通拥堵&#xff0c;还能为乘客带来更加舒适、便捷的出行…

注册个人小程序

访问地址 https://mp.weixin.qq.com/ 立即注册 选择小程序 注册 填写信息 登录邮箱 访问邮箱的链接激活账号 选择个人&#xff0c;填写信息 注册完成&#xff0c;即可登录进入填写信息

苍穹外卖-day15:套餐管理

套餐管理 课程内容 套餐分页查询启售停售套餐删除套餐新增套餐 1. 套餐分页查询 1.1 需求分析和接口设计 根据产品原型来了解需求&#xff0c;套餐分页查询的产品原型如下&#xff1a; 业务规则&#xff1a; 根据页码展示套餐信息(套餐名称、套餐图片、套餐分类、价格、售…

qt+ffmpeg 实现音视频播放(二)之音频播放

一、音频播放流程 1、打开音频文件 通过 avformat_open_input() 打开媒体文件并分配和初始化 AVFormatContext 结构体。 函数原型如下&#xff1a; int avformat_open_input(AVFormatContext **ps, const char *url, AVInputFormat *fmt, AVDictionary **options); 参数说…