【GPT-SOVITS-04】SOVITS 模块-鉴别模型解析

news2025/1/9 16:13:16

说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。

知乎专栏地址:
语音生成专栏

系列文章地址:
【GPT-SOVITS-01】源码梳理
【GPT-SOVITS-02】GPT模块解析
【GPT-SOVITS-03】SOVITS 模块-生成模型解析
【GPT-SOVITS-04】SOVITS 模块-鉴别模型解析
【GPT-SOVITS-05】SOVITS 模块-残差量化解析
【GPT-SOVITS-06】特征工程-HuBert原理

1.SOVITS 鉴别器

1.1、概述

GPT-SOVITS 在鉴别器这块在SOVITS原始版本上做了简化,先回顾下SOVITS的鉴别器。主要包含三类:
在这里插入图片描述
各个鉴别器的输出都包括两类,即各层中间输出和最终结果输出,分别用来计算特征损失和生成损失。如下:
在这里插入图片描述

1.2、MRD举例

在这里插入图片描述

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils import weight_norm, spectral_norm

class DiscriminatorR(torch.nn.Module):
    def __init__(self, hp, resolution):
        super(DiscriminatorR, self).__init__()

        self.resolution = resolution
        self.LRELU_SLOPE = hp.mpd.lReLU_slope

        norm_f = weight_norm if hp.mrd.use_spectral_norm == False else spectral_norm

        self.convs = nn.ModuleList([
            norm_f(nn.Conv2d(1, 32, (3, 9), padding=(1, 4))),
            norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), padding=(1, 4))),
            norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), padding=(1, 4))),
            norm_f(nn.Conv2d(32, 32, (3, 9), stride=(1, 2), padding=(1, 4))),
            norm_f(nn.Conv2d(32, 32, (3, 3), padding=(1, 1))),
        ])
        self.conv_post = norm_f(nn.Conv2d(32, 1, (3, 3), padding=(1, 1)))

    def forward(self, x):
        fmap = []

        # 获取频谱,这里是做了窗口傅里叶变换
        # 傅里叶变换时,频谱数量、窗口的移动、窗口大小由参数 resolution 决定
        x = self.spectrogram(x)
        x = x.unsqueeze(1)
        for l in self.convs:

            # 与其他鉴别器一样经过conv-1d 和 leak-relue 形成中间层特征
            x = l(x)
            x = F.leaky_relu(x, self.LRELU_SLOPE)

            # 中间层特征被保存在 fmap 中
            fmap.append(x)
        x = self.conv_post(x)
        fmap.append(x)
        x = torch.flatten(x, 1, -1)

        # 返回各层的中间层特征 fmap  和 最终输出 x
        return fmap, x

    def spectrogram(self, x):
        n_fft, hop_length, win_length = self.resolution
        x = F.pad(x, (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), mode='reflect')
        x = x.squeeze(1)
        x = torch.stft(x, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=False, return_complex=False) #[B, F, TT, 2]
        mag = torch.norm(x, p=2, dim =-1) #[B, F, TT]

        return mag


class MultiResolutionDiscriminator(torch.nn.Module):
    def __init__(self, hp):
        super(MultiResolutionDiscriminator, self).__init__()
        self.resolutions = eval(hp.mrd.resolutions)
        self.discriminators = nn.ModuleList(
            [DiscriminatorR(hp, resolution) for resolution in self.resolutions]
        )

    def forward(self, x):
        ret = list()

        # 这里做了一个不同尺度的 DiscriminatorR

        """
        在 base.yml 中 mrd 的参数如下,有四个不同的尺度:
        mrd:
        resolutions: "[(1024, 120, 600), (2048, 240, 1200), (4096, 480, 2400), (512, 50, 240)]" # (filter_length, hop_length, win_length)
        use_spectral_norm: False
        lReLU_slope: 0.2
        """
        for disc in self.discriminators:
            ret.append(disc(x))

        return ret  # [(feat, score), (feat, score), (feat, score)]

2.GPT-SOVITS 鉴别器

2.1、主要更改

GPT-SOVITS 鉴别器结构与 SOVITS基本类似,只是去除了多分辨率鉴别器,其余基本一样,包括多周期鉴别器的尺度也是 2, 3, 5, 7, 11。其返回结果也包含最终【生成鉴别结果】和各层输出【特征鉴别结果】两类。

class MultiPeriodDiscriminator(torch.nn.Module):
    def __init__(self, use_spectral_norm=False):
        super(MultiPeriodDiscriminator, self).__init__()
        periods = [2, 3, 5, 7, 11]

        discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
        discs = discs + [
            DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
        ]
        self.discriminators = nn.ModuleList(discs)

    def forward(self, y, y_hat):
        y_d_rs = []
        y_d_gs = []
        fmap_rs = []
        fmap_gs = []
        for i, d in enumerate(self.discriminators):
            y_d_r, fmap_r = d(y)      # 原始音频输入,返回鉴别结果
            y_d_g, fmap_g = d(y_hat)  # 推测音频输入,返回鉴别结果
            y_d_rs.append(y_d_r)
            y_d_gs.append(y_d_g)
            fmap_rs.append(fmap_r)
            fmap_gs.append(fmap_g)

        return y_d_rs, y_d_gs, fmap_rs, fmap_gs

2.2、损失函数

y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
with autocast(enabled=False):
    loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
    loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl

    loss_fm = feature_loss(fmap_r, fmap_g)
    loss_gen, losses_gen = generator_loss(y_d_hat_g)

如前文所述,这里特征损失基于各层输出,计算逻辑在 feature_loss

def feature_loss(fmap_r, fmap_g):
    loss = 0
    for dr, dg in zip(fmap_r, fmap_g):
        for rl, gl in zip(dr, dg):
            rl = rl.float().detach()
            gl = gl.float()
            loss += torch.mean(torch.abs(rl - gl))

    return loss * 2

最终生成损失判别基于最终结果,计算逻辑在 generator_loss

def generator_loss(disc_outputs):
    loss = 0
    gen_losses = []
    for dg in disc_outputs:
        dg = dg.float()
        l = torch.mean((1 - dg) ** 2)
        gen_losses.append(l)
        loss += l

    return loss, gen_losses

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1524772.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

正则表达式与re模块

目录 正则表达式 简介 语法: 常用元字符: 量词: 贪婪匹配和惰性匹配: re模块 简介: 常用的几个模块: 1.findall 2.search 3.finditer 4.compile 案例展示: 需求: 思路分析&#…

Blocks —— 《Objective-C高级编程 iOS与OS X多线程和内存管理》

目录 Blocks概要什么是BlocksOC转C方法关于几种变量的特点 Blocks模式Block语法Block类型 变量截获局部变量值__block说明符截获的局部变量 Blocks的实现Block的实质 Blocks概要 什么是Blocks Blocks是C语言的扩充功能,即带有局部变量的匿名函数。 顾名思义&#x…

u盘文件损坏怎么恢复数据?分享三个数据恢复方法

随着科技的飞速发展,U盘已成为我们日常生活和工作中不可或缺的数据存储工具。然而,由于各种原因,如不当操作、病毒感染或硬件故障等,U盘中的文件可能会受到损坏。那么,当U盘文件损坏时,我们该如何恢复数据呢…

mac下Appuim环境安装

参考资料 Mac安装Appium_mac电脑安装appium-CSDN博客 安卓测试工具:Appium 环境安装(mac版本)_安卓自动化测试mac环境搭建-CSDN博客 1. 基本环境依赖 1 node.js 2 JDK(Java JDK) 3 Android SDK 4 Appium&#x…

深度学习-基于机器学习的语音情感识别系统的设计

概要 语音识别在现实中有着极为重要的应用,现在语音内容的识别技术已日趋成熟。当前语音情感识别是研究热点之一,它可以帮助AI和人更好地互动、可以帮助心理医生临床诊断、帮助随时随地高效测谎等。本文采用了中科院自动化所的CASIA语料库作为样本&#…

Qt文件以及文件夹相关类(QDir、QFile、QFileInfo)的使用

关于Qt相关文件读写操作以及文件夹的一些知识,之前也写过一些博客: Qt关于路径的处理(绝对路径、相对路径、路径拼接、工作目录、运行目录)_qt 相对路径-CSDN博客 C/Qt 读写文件_qt c 读取文本文件-CSDN博客 C/Qt读写ini文件_…

【GPT-SOVITS-01】源码梳理

说明:该系列文章从本人知乎账号迁入,主要原因是知乎图片附件过于模糊。 知乎专栏地址: 语音生成专栏 系列文章地址: 【GPT-SOVITS-01】源码梳理 【GPT-SOVITS-02】GPT模块解析 【GPT-SOVITS-03】SOVITS 模块-生成模型解析 【G…

react中hooks使用限制

只能在最顶层使用Hook 不要在循环、条件中调用hook,确保总是在React函数最顶层使用它们 只能React函数中调用Hook 不要在普通的js函数中调用 在React的函数组件中调用Hook 在自定义hook中调用其他hook 原因: 我们每次的状态值或者依赖项存在哪里&…

Unity触发器的使用

1.首先建立两个静态精灵(并给其中一个物体添加"jj"标签) 2.添加触发器 3.给其中一个物体添加刚体组件(如果这里是静态的碰撞的时候将不会触发效果,如果另一个物体有刚体可以将它移除,或者将它的刚体属性设置…

Jest:JavaScript的单元测试利器

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

挑战杯 机器视觉目标检测 - opencv 深度学习

文章目录 0 前言2 目标检测概念3 目标分类、定位、检测示例4 传统目标检测5 两类目标检测算法5.1 相关研究5.1.1 选择性搜索5.1.2 OverFeat 5.2 基于区域提名的方法5.2.1 R-CNN5.2.2 SPP-net5.2.3 Fast R-CNN 5.3 端到端的方法YOLOSSD 6 人体检测结果7 最后 0 前言 &#x1f5…

YOLOV9训练自己的数据集

1.代码下载地址GitHub - WongKinYiu/yolov9: Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information 2.准备自己的数据集 这里数据集我以SAR数据集为例 具体的下载链接如下所示: 链接:https:/…

软件测试 自动化测试selenium 基础篇

文章目录 1. 什么是自动化测试?1.1 自动化分类 2. 什么是 Selenium ?3. 为什么使用 Selenium ?4. Selenium 工作原理5. Selenium 环境搭建 1. 什么是自动化测试? 将人工要做的测试工作进行转换,让代码去执行测试工作 …

netlogo 羊-草生态系统模型的系统动力学搭建

to setupclear-allsystem-dynamics-setupendto gosystem-dynamics-gosystem-dynamics-do-plot enda 羊的净出生率 a 0.001sheep_birth a * sheep * grass羊 10 sheep 10b 羊的死亡率 0.01 b 0.01death 羊的死亡流 羊x 羊的死亡率 death b * sheep草 200 grass 200R 草的净…

2024最新PHP彩虹网盘与外链分享程序,支持所有格式文件的上传

彩虹外链网盘是一款基于PHP的在线存储和分享平台,它允许用户上传各种类型的文件,并提供了生成文件链接、图片链接、音乐和视频链接的功能。同时,它还会自动生成相应的UBB代码和HTML代码,支持文本、图片、音乐和视频的在线预览。这…

基于深度学习LSTM+NLP情感分析电影数据爬虫可视化分析推荐系统(深度学习LSTM+机器学习双推荐算法+scrapy爬虫+NLP情感分析+数据分析可视化)

文章目录 基于深度学习LSTMNLP情感分析电影数据爬虫可视化分析推荐系统(深度学习LSTM机器学习双推荐算法scrapy爬虫NLP情感分析数据分析可视化)项目概述深度学习长短时记忆网络(Long Short-Term Memory,LSTM)机器学习协…

【Frida】04_Frida中使用TypeScript脚本(采坑)

▒ 目录 ▒ 🛫 导读需求开发环境演示目标 1️⃣ 操作步骤安装node 20.10.0在 VSCode 中打开项目目录初始化一个 NodeJS 项目安装 TypeScript初始化 TypeScript 项目安装依赖配置 TypeScript编写代码编译设置编译脚本运行,查看结果 2️⃣ 采坑frida-compi…

R语言深度学习-6-模型优化与调试

本教程参考《RDeepLearningEssential》 这是本专栏的最后一篇文章,一路走来,大家应该都可以独立的建立一个自己的神经网络进行特征学习和预测了吧! 6.1 缺失值处理 在我们使用大量数据进行建模的时候,缺失值对模型表现的影响非常…

【鸿蒙HarmonyOS开发笔记】自定义组件详解

自定义组件 除去系统预置的组件外,ArkTS 还支持自定义组件。使用自定义组件,可使代码的结构更加清晰,并且能提高代码的复用性。 我们开发的每个页面其实都可以视为自定义组件内置组件的结合 语法说明 自定义组件的语法如下图所示 各部分…

Github: Github actions 自动化工作原理与多workflow创建和部署

Github actions 1 )概述 Github Actions 是Github官方推出的 CI/CD 解决方案 https://docs.githu.com/en/actions 优点 自动发布流程可减少发布过程中手动操作成本,大幅提升ci/cd效率,快速实现项目发布上线 缺点 存在较高的技术门槛需要利用…