C语言 数据在内存中的存储

news2025/1/12 13:24:48

目录

前言

一、整数在内存中的存储

二、大小端字节序和字节序判断

2.1.练习一

2.2 练习二

2.3 练习三

2.4 练习四

2.5 练习五

2.6 练习六

三、浮点数在内存中的存储

3.1 浮点数存的过程

3.2 浮点数取的过程

总结


前言

数据在内存中根据数据类型有不同的存储方式,今天我们就来了解一下,我们常见的数据类型在内存中的存储方式。


一、整数在内存中的存储

在之前讲操作符时我们讲了整形在内存中以二进制存放:C语言操作符详解

整数的2进制表⽰方法有三种,即 原码 反码 补码
三种表示方法均有符号位数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位最
高位的⼀位是被当做符号位,剩余的都是数值位。
正整数的原、反、补码都相同。
负整数的三种表示方法各不相同。
原码 :直接将数值按照正负数的形式翻译成⼆进制得到的就是原码。
反码 :将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码 :反码+1就得到补码。
对于整形来说:数据存放内存中其实存放的是 补码
因为使用补码,可以将符号位和数值域统⼀处理,同时,加法和减法也可以统⼀处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

二、大小端字节序和字节序判断

当我们知道了整形在内存中如何存储时,我们来看下面一段代码:

#include<stdio.h>

int main()
{
	int a = 0x11223344;

	return 0;
}

我们发现为什么是44 33 22 11这种顺序存储的,这时我们就要引入大小端字节序的概念了。

其实超过⼀个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分为大端字节序存储和小端字节序存储,下⾯是具体的概念:
大端(存储)模式 :是指数据的 低位字节 内容保存在内存的 高地址 处,而数据的 高位字节 内容,保存在内存的 低地址 处。(低->高,高->低)
小端(存储)模式 :是指数据的 低位字节 内容保存在内存的 低地址 处,而数据的 高位字节 内容,保存在内存的 高地址 处。(低->低,高->高)
为什么有大小端之分呢?
  这是因为在计算机系统中,我们是以 字节 为单位的,每个地址单元都对应着⼀个字节,⼀个字节为8bit 位,但是在C语⾔中除了8 bit 的 char 之外,还有16 bit 的 short 型,32 bit 的 long 型(要看
具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于⼀个字节,那么必然存在着⼀个如何将多个字节安排的问题。因此就导致了 ⼤端存储模式 小端存储模式 
  例如:⼀个 16bit short x ,在内存中的地址为 0x0010 x 的值为 0x1122 ,那么0x11 为⾼字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中,0x22 放在⾼地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。
那我们来看看几道练习题:

2.1.练习一

设计一个小程序来判断当前机器的字节序

#include<stdio.h>

int check_sys()
{
	int i = 1;
	return (*(char*)&i);
}
int main()
{
	int ret = check_sys();
	if (ret == 1)
	{
		printf("小端\n");
	}
	else
	{
		printf("大端\n");
	}
	return 0;
}

这里1在内存中存储为00000000000000000000000000000001,可以换为16进制00 00 00 01,如果是小端存储则在内存中字节序为01 00 00 00 ,所以强制类型转换为char访问一个字节就是01,如果是大端存储就是00 00 00 01,返回的就是00。

2.2 练习二

#include<stdio.h>

int main()
{
	char a = -1;
	signed char b = -1;
	unsigned char c = -1;
	printf("a=%d,b=%d,c=%d", a, b, c);
	return 0;
}

其中char类型的-1在内存中表示为11111111,所以通过%d打印后要进行整型提升变为11111111111111111111111111111111,打印出来还是-1,signed char与char类型一样。

unsigend char由于是无符号的,所以最高位不为符号位。在内存中存储图解:

所以unsigend char类型范围为0~255

在unsigend char中-1为11111111,与255一样,所以c输出为255。

2.3 练习三

#include <stdio.h>
int main()
{
   char a = -128;
   printf("%u\n",a);
   return 0;
}

在char类型中,数据是有符号的所以最高位为符号位,在内存中存储图解:

其中127+1后10000000为 -128,所以char整型范围为-128~127

%u为通过无符号的整型打印,-128为10000000通过整型提升为1111111111111111111111110000000,由于无符号打印,所以最高位不是符号位,所以为正数,正数原反补码相同。

#include <stdio.h>
int main()
{
   char a = 128;
   printf("%u\n",a);
   return 0;
}

128在char中存放也是10000000,所以结果通过与上面一样:

2.4 练习四

#include<stdio.h>

int main()
{
	char a[1000];
	int i;
	for (i = 0; i < 1000; i++) {
		a[i] = -1 - i;
	}
	printf("%d", strlen(a));
	return 0;
}

分析上面代码我们知道,循环-1,-2,-3,-4.....strlen遇到'\0'停止。但是数组为char类型,char类型范围为-128~127,所以到根据char类型数据存储-128时再减1就变成了127了

直到到0也就是’\0‘的ASCII值停止。结果为|-128|+127=255

2.5 练习五

#include <stdio.h>
unsigned char i = 0;
int main()
{
    for(i = 0;i<=255;i++)
 {
    printf("hello world\n");
 }
    return 0;
}

根据前面我们可知unsigned char范围为0~255,所以当i为255时,加1又变成0了,所以会无限循环代码。

同理,下面这段代码,当i=0时,减1又变成了255,所以i永远不会小于0,所以无限循环。

#include<stdio.h>

int main()
{
	unsigned int i;
	for (i = 9; i >= 0; i--)
	{
		printf("%u\n", i);
	}
	return 0;
}

2.6 练习六

#include <stdio.h>
int main()
{
   int a[4] = { 1, 2, 3, 4 };
   int *ptr1 = (int *)(&a + 1);
   int *ptr2 = (int *)((int)a + 1);
   printf("%x,%x", ptr1[-1], *ptr2);
   return 0;
}

下面是对代码的分析:

int main()
{
	int a[4] = { 1, 2, 3, 4 };
	//01 00 00 00 02 00 00 00 03 00 00 00 04 00 00 00 在内存中的存储
	int* ptr1 = (int*)(&a + 1);
	//&a为数组的地址,+1跳过整个数组
	int* ptr2 = (int*)((int)a + 1);
	//a为数组首地址,强制类型转换为整型,整型加1,直接加1
	printf("%#x,%#x", ptr1[-1], *ptr2);
    //ptr[-1]==*(ptr-1) ptr类型为int* ptr为数组尾地址,-1,为元素4的地址
	//*ptr ptr为01 后面 00的地址,ptr为int*,解引用访问四个字节 00 00 00 02,因为小端存储所以为0x2000000
	return 0;
}

三、浮点数在内存中的存储

在了解浮点数在内存中的存储之前,我们先来看看下面一段代码:

#include <stdio.h>
int main()
{
   int n = 9;
   float *pFloat = (float *)&n;
     printf("n的值为:%d\n",n);
     printf("*pFloat的值为:%f\n",*pFloat);
   *pFloat = 9.0;
     printf("num的值为:%d\n",n);
     printf("*pFloat的值为:%f\n",*pFloat);
 return 0;
}

大家觉得输出结果是什么呢?

为什么会出现这样的结果呢?那让我们来了解一下浮点数在内存中的存储。

根据国际标准IEEE(电气和电子工程协会) 754,任意⼀个二进制浮点数V可以表示成下面的形式:
    V =(−1)^S * M ∗ 2^E
• (−1)S 表⽰符号位,当S=0,V为正数;当S=1,V为负数
• M表⽰有效数字,M是⼤于等于1,⼩于2的
• 2^E表⽰指数位

比如说

十进制的5.0 二进制表示为101.0 相当于1.01×2^2,此时S=0,M=1.01,E=2。

十进制的-5.0,写成⼆进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。

十进制的0.5,写成二进制就是0.1 相当于1.0×2^-1,那么S=1,M=1,E=-1。

IEEE 754规定:
对于32位的浮点数,最高的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M
                                                      (float类型)
对于64位的浮点数,最高的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M
                                                        (double类型)

3.1 浮点数存的过程

IEEE 754 对有效数字M和指数E,还有一些特别规定。
前面说过, 1 M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。
IEEE 754 规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被 舍去 ,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的目的,是 节省1位有效数字 。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。
至于指数E,情况就比较复杂
⾸先,E为⼀个⽆符号整数(unsigned int)这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上⼀个 中间数 ,对于8位的E,这个中间数是 127 ;对于11位的E,这个中间数是 1023 。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

3.2 浮点数取的过程

指数E从内存中取出还可以再分成三种情况:
1.E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第⼀位的1。
比如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则1.0*2^(-1),其阶码为-1+127(中间值)=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位
00000000000000000000000,则其⼆进制表示形式为:
0 01111110 00000000000000000000000

2.E全为0

这时,浮点数的指数E等于 1-127 (或者 1-1023 )即为真实值,有效数字M不再加上第⼀位的1,而是还原为0.xxxxxx的小数。这样做是为了表示 ±0 ,以及接近于0的 很小的数字
0 00000000 00100000000000000000000

3.E全为1

这时,如果有效数字M全为0,表示±无穷⼤(正负取决于符号位s);

 0 11111111 00010000000000000000000

了解完浮点数在内存中的存储后,我们来看看刚才的题:

#include <stdio.h>
int main()
{
   int n = 9;
   float *pFloat = (float *)&n;
     printf("n的值为:%d\n",n);
     printf("*pFloat的值为:%f\n",*pFloat);
   *pFloat = 9.0;
     printf("num的值为:%d\n",n);
     printf("*pFloat的值为:%f\n",*pFloat);
 return 0;
}

9在内存中的存储为00000000 00000000 00000000 00001001

如果以浮点数进行存储则为0 00000000 000 0000 0000 0000 0000 1001

由于指数E全为0,所以符合E为全0的情况。因此,浮点数V就写成:

V=(-1)^0 × 0.00000000000000000001001×2^(-126)=1.001×2^(-146)
由于这是一个非常小的数,接近与0,所以用十进制小数表示就是0.000000。
由于*pFloat=9.0,用二进制表示1001.0,及为1.001 ×2^3
在内存中表示:
0 10000010 001 0000 0000 0000 0000 0000
这个32位的⼆进制数,被当做整数来解析的时候,就是整数在内存中表示,原码正是1091567616
 

总结

上述文章讲了整型,浮点型在内存中的存储,和大小端的概念,希望对你有所帮助。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1524149.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ElasticSearch常见用法,看这一篇就够了(文末送书)

2024送书福利正式起航 关注「哪吒编程」&#xff0c;提升Java技能 文末送3本《一本书讲透Elasticsearch&#xff1a;原理、进阶与工程实践》 大家好&#xff0c;我是哪吒。 ElasticSearch是一款由Java开发的开源搜索引擎&#xff0c;它以其出色的实时搜索、稳定可靠、快速安…

PCIE问题定位000:PCIe需要的定位手段

1、PCIe debug环境说明 本文将以PCIe EP用户逻辑举例&#xff0c;描述PCIe可以添加哪些定位手段。 如图所示&#xff0c;PCIe IP作为endpoint与RC对接&#xff0c;用户实现了应用逻辑&#xff0c;与PCIe IP进行交互&#xff0c;交互信号中data格式为TLP报文格式&#xff0c;且…

单链表-合并两个集合的数

bb都在代码里哈哈哈哈 对了这里有个要求&#xff0c;不能破坏原来的链表 #include<iostream> #include<cstring> using namespace std;typedef struct LNode {int data;struct LNode* next; }LinkNode; void Create(LinkNode*& L, int a[], int l)//首先建链…

mongodb查询大全mongo语句-MongoDB语句与MySQL语句对比

mongodb查询大全mongo语句 以前版本官网:https://www.mongodb.com/ 现在版本2021年12月7日官网:https://www.mongodb.com 直通车:https://docs.mongodb.com 一、前言 虽然这些语句在开发当中不会使用,因为springdataMongoDB封装的非常完美了。但是这里的语句思想和关系型…

惯导系统静止初始化方法与代码实现并在gazebo中测试

惯导系统静止初始化方法与代码实现并在gazebo中测试 前言静止初始化方法惯导静止初始化实现代码在gazebo中进行测试 前言 在进行GPS加IMU的组合导航或者Lidar加IMU的组合导航时&#xff0c;用EKF或者ESKF的滤波方法时&#xff0c;需要提前知道惯导的测量噪声、初始零偏、重力方…

Mysql 索引、锁与MVCC等相关知识点

文章目录 Mysql锁的类型锁使用MVCC快照读和当前读读视图【Read View】串行化的解决 索引类型存储方式区分逻辑区分实际使用区分索引失效情况 索引建立规范SQL编写规范exlpain字段解析ACID的原理日志引擎慢SQL整合SpringBoot博客记录 Mysql锁的类型 MySQL中有哪些锁&#xff1a…

机器学习——压缩网络作业

文章目录 任务描述介绍知识蒸馏网络设计 Baseline实践 任务描述 网络压缩&#xff1a;使用小模型模拟大模型的预测/准确性。在这个任务中&#xff0c;需要训练一个非常小的模型来完成HW3&#xff0c;即在food-11数据集上进行分类。 介绍 有许多种网络/模型压缩的类型&#xff0…

如何写好Stable Diffusion的prompt

Stable Diffusion是一种强大的文本到图像生成模型&#xff0c;其效果在很大程度上取决于输入的提示词&#xff08;Prompt&#xff09;。以下是一些关于如何编写有效的Stable Diffusion Prompt的秘诀&#xff1a; 明确描述&#xff1a;尽量清晰地描述你想要的图像内容。使用具体…

3.4 bp,si,di寄存器,寻址方式,寄存器总结

汇编语言 1. [bxidata] 我们可以用[bx]来指明一个内存单元我们也可以用[bxidata]来表示一个内存单元&#xff0c;它的偏移地址为bx中的数值加上idata mount c d:masm c: debug r d 2000:1000 e 2000:1000 12 34 56 78 a mov ax,2000 mov ds,ax mov bx,1000 mov ax,[bx] mov c…

训练YOLOv8m时AMP显示v8n

在训练Yolov8模型时&#xff0c;使用AMP&#xff08;Automatic Mixed Precision&#xff09;可以加速训练过程并减少显存的使用。AMP是一种混合精度训练技术&#xff0c;它通过将模型参数的计算转换为低精度&#xff08;如半精度&#xff09;来提高训练速度&#xff0c;同时保持…

llama笔记:官方示例解析 example_chat_completion.py

1 导入库 from typing import List, Optional从typing模块中导入List和Optional。typing模块用于提供类型注解的支持&#xff0c;以帮助明确函数预期接收和返回的数据类型。List用于指定列表类型Optional用于指定一个变量可能是某个类型&#xff0c;也可能是None。 import fir…

Visual Studio 2022下配置 OpenMP 多线程编程环境与运行

目录 一创建项目时选择“创建新项目 -> 空项目 -> 下一步 -> 创建” 二右键“源文件 -> 添加 -> 新建项 -> 添加” 三配置 1. 测试程序&#xff1a; 最开始的时候错误很多&#xff1a; 2.将 “ include "stdafx.h" ” 删掉&#xff0c;添加 “…

4.1_6 文件的基本操作

文章目录 4.1_6 文件的基本操作&#xff08;一&#xff09;创建文件&#xff08;二&#xff09;删除文件&#xff08;三&#xff09;打开文件&#xff08;四&#xff09;关闭文件&#xff08;五&#xff09;读文件&#xff08;六&#xff09;写文件 总结 4.1_6 文件的基本操作 …

uni-app开发特点和开发流程

uni-app是一个基于Vue.js框架的跨平台应用开发框架&#xff0c;通过一套代码可以同时运行在多个平台上&#xff0c;包括iOS、Android、H5等。它采用了基于流布局的页面渲染机制&#xff0c;可以自动适配不同平台的屏幕尺寸和分辨率。uniapp官网&#xff1a;https://uniapp.dclo…

2024-03-17悠然-思源茶社申时茶会有感

悠悠白云里&#xff0c;独住青山客&#xff1b; 然灯松林静&#xff0c;煮茗柴门香&#xff1b; 思归若汾水&#xff0c;无日不悠悠&#xff1b; 源上花初发&#xff0c;公应日日来&#xff1b; 申章写深谊&#xff0c;唯愿长相聚&#xff1b; 时时思己过&#xff0c;刻刻…

图鸟UI发布免费开源、高颜值小程序UI框架

大家好&#xff0c;今天分享的主题是图表统计。图表统计是使用图表和图形来可视化和呈现数据的方法。它通过将数据转化为柱状图、折线图、饼图等形式来展示各种统计指标和趋势。 图表统计可以帮助我们更好地理解和分析数据&#xff0c;发现数据之间的关联和规律&#xff0c;并…

四、自然语言中的生成式任务

目录 4.0 机器翻译 4.1 文本摘要 4.1.1 抽取式摘要 4.2.2 生成式摘要 NLP学习笔记系列&#xff0c;欢迎收藏交流&#xff1a; 零、自然语言处理开篇-CSDN博客 一、NLP中的文本分类-CSDN博客 二、NLP中的序列标注&#xff08;分词、主体识别&#xff09;-CSDN博客 三、NL…

基于单片机的IC 卡门禁系统设计

摘要:针对传统门锁钥匙易丢失、配置不便和忘记携带等问题,提出了一种基于STC89C52 的IC 卡门禁系统设计。该系统以STC89C52 单片机为核心来控制电子锁模块的开关。主要过程是由RFID 模块读取IC卡ID 并通过串口发送至STC89C52 单片机模块,STC89C52 单片机模块可以实现在线对I…

使用广度优先搜索算法找到最短路径,然后绘制路径图

使用广度优先搜索算法找到最短路径&#xff0c;然后绘制路径图 from collections import deque import matplotlib.pyplot as plt# 定义网格环境的参数 GRID_SIZE 5 GRID_WIDTH 4 AGENT_SPEED 2 START_STATE (0, 0) GOAL_STATE (GRID_SIZE - 1, GRID_SIZE - 1)# 定义动作…

Excel小技巧 (4) - Sumif用法

学期末&#xff0c;根据以下表格如果要汇总学生的三门主课分数&#xff0c;如何能快速的汇总呢&#xff1f; sumif就是一个很好用的函数 SUMIF&#xff08;指定汇总的key范围&#xff0c;汇总值&#xff0c;合计范围&#xff09;