研究生总结

news2025/1/13 17:24:30

Note:本博客更多是关于自己的感悟,没有翻阅文件详细查证,如果存在错过,也请提出指正。

1. 半监督回归

相比于半监督分类,半监督回归相对冷门。回归和分类之间有着难以逾越的天谴,预测精度。分类中的类别是可数的,有限的;而在回归中可以认为类别是无限的(可以通过离散化将回归任务转化成分类任务,但是这样回归精度就会极具下降)。BEL 试图打破分类与回归之间的天谴,参见。Deep Imbalanced Regression 认为回归任务中同样存在不平衡的问题。其实,这一点在半监督语境下的回归任务中更加突出。

半监督回归则是想要利用无标记数据来提升模型性能。一种简单且有效的方法是打伪标签。值得注意的是,半监督分类中的伪标签包含的噪声更小。可以考虑在一个猫狗分类的任务中,随机标记一个伪标签都有百分之五十的概率标记正确。而在一个预测西瓜甜度,假设范围是 [ 0 , 1 ] [0, 1] [0,1], 很难预测一个一摸一样的标签。

正是因为伪标签很难预测正确,所以需要一个量化置信度的策略。在这里插入图片描述图1. 伪标签策略在分类和回归任务中的差异图。来自《Semi-Supervised Deep Regression with Uncertainty Consistency and Variational Model Ensembling via Bayesian Neural Networks》
目前的工作中提出的是启发式策略,即不能证明这样一定是对的,但是感觉是对的。
COREG 提供了一个量化置信度,
δ x u = ∑ x i ∈ Ω u ( ( y i − h ( x i ) ) 2 − ( y i − h ′ ( x i ) ) 2 ) \delta_{\mathbf{x}_u} = \sum_{\mathbf{x}_i \in \Omega_u}((y_i-h(\mathbf{x}_i))^2-(y_i - h'(\mathbf{x}_i))^2) δxu=xiΩu((yih(xi))2(yih(xi))2)。师兄的论文也基于这样的一个启发式置信度策略来设计。
MSSRA 也提供了一个置信度:由多个回归器对于样本预测的极值(最大值减去最小值)确定。其实这里还有一个问题,伪标签应该添加多少呢,COREG 设计了一个最大的迭代次数,如果没有能带来正提升的无标记样本,则提前停止。这里涉及到数量与质量的权衡,其实可以设计一个伪标签数量控制的策略。

其实,还有一种量化伪标签置信度的方法,不确定性。在聊不确定性之前,可以先了解一下点估计与区间估计。分类问题其实可以相当于点估计,那么回归问题相当于区间估计。

在这里插入图片描述

图2. 3σ准则
  1. 68% 的数据会落在 μ ± σ \mu \pm \sigma μ±σ 内,即数据分布在处于 ( μ − σ , μ + σ ) (\mu−\sigma, \mu+\sigma) (μσ,μ+σ)中的概率是 0.68
  2. 95% 的数据会落在 μ ± 2 σ \mu \pm 2\sigma μ±2σ 内,即数据分布在处于 ( μ − 2 σ , μ + 2 σ ) (\mu−2\sigma, \mu+2\sigma) (μ2σ,μ+2σ)中的概率是 0.95
  3. 99% 的数据会落在 μ ± 3 σ \mu \pm 3\sigma μ±3σ 内,即数据分布在处于 ( μ − 3 σ , μ + 3 σ ) (\mu−3\sigma, \mu+3\sigma) (μ3σ,μ+3σ)中的概率是 0.99

在这里插入图片描述
图3. 不确定性。来自《A review ofuncertainty quantification in deep learning: Techniques, applications and challenges》
这里就不细讲下去了,内容太多了。

除了刚刚讲到的伪标签,在半监督分类问题中一致性正则表现优秀。目前还没有找到有基于一致性正则的半监督回归工作。
C ( D u , w ) = 1 ∣ D u ∣ ∑ x i ∈ D u d ( f ( x i , w ) , T ( x ^ i ) ) \mathcal{C}(D_u, \mathbf{w}) = \frac{1}{|D_u|} \sum_{x_i \in D_u}d(f(x_i,\mathbf{w}), T(\hat{x}_i)) C(Du,w)=Du1xiDud(f(xi,w),T(x^i))
其中, T ( x ^ i ) T(\hat{x}_i) T(x^i) 我更喜欢称为锚点,其实也相当于是伪标签,但是没有置信度的概念,相对于质量,更倾向于使用所有的无标记数据。由于 C ( D u , w ) \mathcal{C}(D_u, \mathbf{w}) C(Du,w) 没有携带标签信息,所有称之为正则。

2. 读论文技巧

三不读:

  1. 水刊论文不读
  2. 太难的论文也不读
  3. 同门师兄的论文不读

Trick1: 精读摘要。有时候只需要读完摘要就够了。
Trick2:Introduction 一般不用读,毕竟老板的八股指南说 Introduction 是摘要的详细描述,读了摘要就没必要读了。
Trick3:读完摘要带着问题去读。
Trick4:读最新的论文,即使和自己课题不是太相关。这一点主要是找idea的时候可以挂靠的理论。我们的创新主要是缝合(e.g. 李师兄就是将自步学习和协同训练结合在一起)。

3. 写论文技巧

  1. 老板的八股指南。

  2. 我的经验

  3. 写论文最大的难点就是有话说,其实我觉得老板说的对,先写下来,即使是废话。不用担心是废话,在论文的打磨过程会逐渐消失的。

  4. 每话说还有一个就是对自己处理的问题理解不够深刻。这一点可能有点解决方案:

    • 可以读综述论文,增加对课题的整体了解。
    • 组内讨论。
    • 每周读一篇高质量论文,厚积薄发。
  5. 写论文时间安排不要阻塞。在实际情况中,跑实验会持续两周,不用等着实验结果在开始写论文。毕竟实验结果并不影响你描述你的算法,可以在编写算法描述章节边跑实验。

4. 代码工具

  1. Experiment_SSR_k_fold 断电重跑,解决实验室每天晚上断点问题,持久化实验跑的进度。
  2. StaticTestUtil.py fridman 检验
  3. FileUtil.py/summaryCSVFilePlus 汇总多个对比算法的实验结果。
  4. FileUtil.py/csv2LatexTablePlusPlus 生成latex表格代码,剩去手动填写数据的时间。
  5. 对比算法,COREG, SAFER,MSSRA,BHD,Self-kNN,S3VR

代码比较乱,主要是日常自己使用,后续没有考虑维护的问题。

5. 杂项

  • 怎么给论文guanshui?
    可以细读一下老板的八股指南。老板认为写论文就像是填写模板一样,每个地方都有应该要填写的东西。主要是有一个理论自洽的方案,比如说半监督学习,就是有一个利用无标记数据的方案。至于三点贡献,这也可以让老板帮你找,抱紧大腿总是没有问题的。

  • 写论文需要公式,自己创造存在困难?
    实际上是不用自己创造的。自己创造很难,那一般是前沿学者的工作。如果确实要到创造公式的地步,怀疑一下自己是不是没有挂靠成熟的理论。抛开前面的那些,写公式要先看别人的,在别人的基础上进行改动。存在一种情况,自己想表达的意思很简单,用语言两三句话就表述出来了,但是用数学语言表达困难,这就需要老板帮助了。

6. 总结

研究生生涯时间过得很快,有效时间其实只有研二的一年。最开始入学的时候很迷茫,不知道做些什么,伴随着还有很多课程,考试,留给自己的学习时间很少。最主要的是迷茫,没有目标体现出来就是这也想做那也想做,结果什么都没有做。这很可怕,研一应该快速的确定自己的课题,最好的是跟着老师,不然就是师兄,自己一个人单干难度加加(我就是这种情况,该踩的坑一个也没少)。研二就主要靠自觉了,早上的时间不能荒废(睡懒觉可不好),多读与课题相关的论文,同时写博客,不然容易忘记(白读)。尽量研二上学期就把小论文初稿写出来,但是这很难,但是不逼自己一把可不行。如果实在没有也应该放松心态,急也没用,只有慢慢的积累,没有人能帮你写。研三,就要考虑自己的就业或者继续深造,同样充满了焦虑。如果没出意外,应该有修改意见了,当然如果已经中了那就太好了,压力骤降。一个普遍的认知是有了修改意见那么机会就很大,要紧紧地抓住,即使是大修机会也很大。我在写下这篇博客的时候在研三的最后阶段了,找工作也很难😂,毕竟时间和努力都用在小论文上,都没时间锻炼编程能力了,可恶!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1523850.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

STM32的简单介绍

STM32是一种基于ARM Cortex-M内核的32位微控制器,由意法半导体公司开发和生产。STM32具有丰富的外设和功能,适用于各种应用场合,如工业控制、消费电子、物联网、人机交互等。STM32的优势包括低功耗、高性能、高可靠性、易于开发等。STM32的系…

elementUI两个select单选框联动

实现需求&#xff1a;两个单选框内容两栋&#xff0c;在选择第一个时&#xff0c;第二个选框能自动更新对应选项。且在切换第一个选项内容时&#xff0c;第二个选框会被清空且切换到新的对应选项。 设置值班班次和备班情况两个选项 &#xff0c;完整代码如下&#xff1a; <…

数据库系统原理实验报告2 | 创建数据库和表

整理自博主本科《数据库系统原理》专业课自己完成的实验报告&#xff0c;以便各位学习数据库系统概论的小伙伴们参考、学习。 专业课本&#xff1a; ———— 本次实验使用到的图形化工具&#xff1a;Heidisql 目录 一、实验目的 二、实验内容 1、创建数据库 2、创建表 1.…

【网络原理】TCP协议详细解析

文章目录 &#x1f332;TCP协议的概念&#x1f338;TCP协议段格式&#x1f338;TCP的特性 &#x1f333;TCP原理详解&#x1f338;确认应答机制&#xff08;安全机制&#xff09;&#x1f338;超时重传机制&#xff08;安全机制&#xff09;&#x1f338;连接管理&#xff08;安…

PHP魔术方法详解

php魔术方法是一些特殊的方法&#xff0c;由特定的环境来进行触发。 这些魔术方法让开发者能够更好地控制对象的行为&#xff0c;特别是在处理不常见的操作或者需要自动化处理某些任务时非常有用。 1、_construct()构造函数&#xff1a; <?php highlight_file(__FILE__);…

微信开发者工具如何使用?使用注意事项

&#xff08;1&#xff09;单位如何进行换算&#xff1f; 1 px 750/屏幕宽度 rpx 1 rpx 屏幕宽度/750 px &#xff08;2&#xff09;如何新建文件&#xff1f; 1> 点开app.json 2> 在“pages/index/index”后面接“&#xff0c;pages/自定义文件夹名/自定义文件名”…

Linux安装JDK1.8 tomcat MariaDB(MySQL删减版)

本文主要使用yum的方式来操作&#xff08;centos) 安装JDK: 先搜索&#xff0c;确定软件包的完整名称 yum list | grep jdk 不同的系统上加载出来的JDK版本有可能不太一样&#xff0c;但是&#xff0c;我们主要使用JDK1.8就&#x1f197;了&#xff01; 再进行安装 yum insta…

Node.js 中 HTML 解析全面指南:探索不同的方法

在 Web 开发中&#xff0c;解析 HTML 是一个常见的任务&#xff0c;特别是当我们需要从网页中提取数据或操作 DOM 时。掌握 Node.js 中解析 HTML 的各种方式&#xff0c;可以大大提高我们提取和处理网页数据的效率。本文将介绍如何在 Node.js 中解析 HTML。 基本概念 HTML 解析…

哥斯拉流量webshell分析-->ASP/PHP

哥斯拉流量webshell分析 哥斯拉是继菜刀、蚁剑、冰蝎之后的又一个webshell利器&#xff0c;这里就不过多介绍了。 哥斯拉GitHub地址&#xff1a;https://github.com/BeichenDream/Godzilla 很多一线师傅不太了解其中的加解密手法&#xff0c;无法进行解密&#xff0c;这篇文章…

力扣细节题:字符串中的最大奇数

奇数只要找到第一位是奇数的即可&#xff0c;不是找单个数字 //即从最低位开始&#xff0c;找到第一位为奇数的位 //然后之前的就是需要的数字char * largestOddNumber(char * num){int i strlen(num) - 1;while(i > 0){if((num[i] - 0) % 2 1)break;i--;}//先找到低位开…

Vue组件封装方案对比——v-if方式与内置component方式

近期在准备搭建一个通用组件库&#xff0c;而公司现有的各个系统也已有自己的组件库只是没抽离出来&#xff0c;但是目前有两套不同的组件封装方案&#xff0c;所以对于方案的选择比较困惑&#xff0c;于是对两种方式进行了对比&#xff0c;结合网上找到的一些开源组件库进行分…

Matlab/simulink基于模糊PID智能控制的温度控制系统建模仿真

参考文献 Matlab/simulink基于模糊PID智能控制的温度控制系统建模仿真 该系统主要对某小区换热站的温度控制策略和控制方案进行了设计&#xff0c;其设计内 容主要包括三部分。首先是基于模糊PID智能控制的温度控制系统设计。在温度控制 算法方面&#xff0c;该设计于传统的P…

HarmonyOS鸿蒙开发常用4种布局详细说明

介绍一下鸿蒙开发常用4种布局 1、线性布局 2、层叠布局 3、网格布局 4、列表布局 ​1. 线性布局&#xff08;Column/Row&#xff09; 线性布局&#xff08;LinearLayout&#xff09;是开发中最常用的布局&#xff0c;通过线性容器Row&#xff08;行&#xff09;和Column&…

模块化项目Eclipse测试网零撸教程

简介&#xff1a;Eclipse 是一个基于 Solana 区块链的初创项目&#xff0c;致力于构建基于 Solana 虚拟机的通用 Layer2 解决方案&#xff0c;为以太坊提供更快速、更通用的 Rollup 技术。其主要用途是为开发者提供构建基于 Solana 虚拟机的 Rollup 应用的平台&#xff0c;解决…

推荐一款好用的前端分页插件jqPaginator

jqPaginator 简洁、高度自定义的jQuery分页组件&#xff0c;适用于多种应用场景。 现在网上各种各样的分页组件很多&#xff0c;但是很难找到十分“称心如意”的&#xff0c;于是jqPaginator诞生了。 我心中理想的分页组件&#xff0c;要不受CSS框架限制&#xff0c;可以使用…

Redis教程——Redis入门

Redis Redis是一种开源内存中数据结构存储&#xff0c;用于数据库、缓存、消息代理和流引擎&#xff0c;其提供了丰富的数据结构&#xff0c;例如&#xff1a;字符串、哈希、列表、有序集合等。 Redis内置了复制、Lua脚本、LRU驱逐、事务和不同级别的磁盘持久化&#xff0c;并…

软考76-上午题-【面向对象技术3-设计模式】-创建型设计模式01

一、创建型设计模式一览 二、创建型设计模式 2-1、创建型设计模式的概念 一个类创建型模式使用继承改变被实例化的类&#xff1b; 一个对象创建型模式将实例化委托给另一个对象。 对应java的new一个对象。 2-2、简单工厂模式&#xff08;静态工厂方法&#xff09; 简单工厂…

XDP学习笔记

XDP的使用与eBPF程序分不开&#xff0c;因此要了解学历XDP&#xff0c;须知道什么是eBPF、什么是XDP。 概念 eBPF BPF&#xff08;Berkeley Packet Filter&#xff09;是一种灵活且高效的数据包过滤技术&#xff0c;最初由 BSD Unix 中的网络子系统引入&#xff1b;BPF 允许用…

基于模型分割的联邦学习

加速局部模型的拟合&#xff1a;根据网络状态的不同&#xff0c;提出一种基于模型分割的端边云协同训练算法&#xff0c;加速FL本地训练&#xff1b;设计一种多轮迭代再聚合的模型聚合算法&#xff0c;加速FL聚合 采用分支DNN对数据进行训练 DNN分割是指利用深度神经网络&…

(学习日记)2024.03.13:UCOSIII第十五节:基于时基列表的时延操作(持续更新)

写在前面&#xff1a; 由于时间的不足与学习的碎片化&#xff0c;写博客变得有些奢侈。 但是对于记录学习&#xff08;忘了以后能快速复习&#xff09;的渴望一天天变得强烈。 既然如此 不如以天为单位&#xff0c;以时间为顺序&#xff0c;仅仅将博客当做一个知识学习的目录&a…