计算机设计大赛 题目:基于深度学习卷积神经网络的花卉识别 - 深度学习 机器视觉

news2024/11/24 5:32:32

文章目录

  • 0 前言
  • 1 项目背景
  • 2 花卉识别的基本原理
  • 3 算法实现
    • 3.1 预处理
    • 3.2 特征提取和选择
    • 3.3 分类器设计和决策
    • 3.4 卷积神经网络基本原理
  • 4 算法实现
    • 4.1 花卉图像数据
    • 4.2 模块组成
  • 5 项目执行结果
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习卷积神经网络的花卉识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 项目背景

在我国有着成千上万种花卉, 但如何能方便快捷的识别辨识出这些花卉的种类成为了植物学领域的重要研究课题。 我国的花卉研究历史悠久,
是世界上研究较早的国家之一。 花卉是我国重要的物产资源, 除美化了环境, 调养身心外, 它还具有药用价值, 并且在医学领域为保障人们的健康起着重要作用。

花卉识别是植物学领域的一个重要课题, 多年来已经形成一定体系化分类系统,但需要植物学家耗费大量的精力人工分析。 这种方法要求我们首先去了解花卉的生长环境,
近而去研究花卉的整体形态特征。 在观察植株形态特征时尤其是重点观察花卉的花蕊特征、 花卉的纹理颜色和形状及其相关信息等。 然后在和现有的样本进行比对,
最终确定花卉的所属类别。

2 花卉识别的基本原理

花卉种类识别功能实现的主要途径是利用计算机对样本进行分类。 通过对样本的精准分类达到得出图像识别结果的目的。 经典的花卉识别设计如下图 所示,
这几个过程相互关联而又有明显区别。

在这里插入图片描述

3 算法实现

3.1 预处理

预处理是对处于最低抽象级别的图像进行操作的通用名称, 输入和输出均为强度图像。 为了使实验结果更精准, 需要对图像数据进行预处理, 比如,
根据需要增强图像质量、 将图像裁剪成大小一致的形状、 避免不必要的失真等等。

3.2 特征提取和选择

要想获取花卉图像中的最具代表性的隐含信息, 就必须对花卉图像数据集进行相应的变换。

特征提取旨在通过从现有特征中创建新特征(然后丢弃原始特征) 来减少数据集中的特征数量。 然后, 这些新的简化功能集应该能够汇总原始功能集中包含的大多数信息。
这样, 可以从原始集合的组合中创建原始特征的摘要版本。 对所获取的信息实现从测量空间到特征空间的转换。

3.3 分类器设计和决策

构建完整系统的适当分类器组件的任务是使用特征提取器提供的特征向量将对象分配给类别。 由于完美的分类性能通常是不可能实现的,
因此一般的任务是确定每种可能类别的概率。 输入数据的特征向量表示所提供的抽象使得能够开发出在尽可能大程度上与领域无关的分类理论。

在这里插入图片描述
在这里插入图片描述

在设计阶段, 决策功能必须重复多次, 直到错误达到特定条件为止。 分类决策是在分类器设计阶段基于预处理、 特征提取与选择及判决函数建立的模型,
对接收到的样本数据进行归类, 然后输出分类结果。

3.4 卷积神经网络基本原理

卷积神经网络是受到生物学启发的深度学习经典的多层前馈神经网络结构。 是一种在图像分类中广泛使用的机器学习算法。

CNN 的灵感来自我们人类实际看到并识别物体的方式。 这是基于一种方法,即我们眼睛中的神经元细胞只接收到整个对象的一小部分,而这些小块(称为接受场)
被组合在一起以形成整个对象。与其他的人工视觉算法不一样的是 CNN 可以处理特定任务的多个阶段的不变特征。
卷积神经网络使用的并不像经典的人工神经网络那样的全连接层, 而是通过采取局部连接和权值共享的方法, 来使训练的参数量减少, 降低模型的训练复杂度。

CNN 在图像分类和其他识别任务方面已经使传统技术的识别效果得到显著的改善。 由于在过去的几年中卷积网络的快速发展, 对象分类和目标检测能力取得喜人的成绩。

典型的 CNN 含有多个卷积层和池化层, 并具有全连接层以产生任务的最终结果。 在图像分类中, 最后一层的每个单元表示分类概率。

在这里插入图片描述

4 算法实现

4.1 花卉图像数据

花卉图像的获取除了通过用拍摄设备手工收集或是通过网络下载已经整理好的现有数据集, 还可以通过网络爬虫技术收集整理自己的数据集。

在这里插入图片描述

以roses种类的训练数据为例,文件夹内部均为该种类花的图像文件

在这里插入图片描述

4.2 模块组成

示例代码主要由四个模块组成:

  • input_data.py——图像特征提取模块,模块生成四种花的品类图片路径及对应标签的List
  • model.py——模型模块,构建完整的CNN模型
  • train.py——训练模块,训练模型,并保存训练模型结果
  • test.py——测试模块,测试模型对图片识别的准确度

项目模块执行顺序

运行train.py开始训练。
训练完成后- 运行test.py,查看实际测试结果
input_data.py——图像特征提取模块,模块生成四种花的品类图片路径及对应标签的List



    import os
    import math
    import numpy as np
    import tensorflow as tf
    import matplotlib.pyplot as plt
    
    # -----------------生成图片路径和标签的List------------------------------------
    train_dir = 'D:/ML/flower/input_data'
    
    roses = []
    label_roses = []
    tulips = []
    label_tulips = []
    dandelion = []
    label_dandelion = []
    sunflowers = []
    label_sunflowers = []


**定义函数get_files,获取图片列表及标签列表**

    # step1:获取所有的图片路径名,存放到
    # 对应的列表中,同时贴上标签,存放到label列表中。
    def get_files(file_dir, ratio):
        for file in os.listdir(file_dir + '/roses'):
            roses.append(file_dir + '/roses' + '/' + file)
            label_roses.append(0)
        for file in os.listdir(file_dir + '/tulips'):
            tulips.append(file_dir + '/tulips' + '/' + file)
            label_tulips.append(1)
        for file in os.listdir(file_dir + '/dandelion'):
            dandelion.append(file_dir + '/dandelion' + '/' + file)
            label_dandelion.append(2)
        for file in os.listdir(file_dir + '/sunflowers'):
            sunflowers.append(file_dir + '/sunflowers' + '/' + file)
            label_sunflowers.append(3)
            # step2:对生成的图片路径和标签List做打乱处理
        image_list = np.hstack((roses, tulips, dandelion, sunflowers))
        label_list = np.hstack((label_roses, label_tulips, label_dandelion, label_sunflowers))
    
        # 利用shuffle打乱顺序
        temp = np.array([image_list, label_list])
        temp = temp.transpose()
        np.random.shuffle(temp)

        # 将所有的img和lab转换成list
        all_image_list = list(temp[:, 0])
        all_label_list = list(temp[:, 1])
            # 将所得List分为两部分,一部分用来训练tra,一部分用来测试val
        # ratio是测试集的比例
        n_sample = len(all_label_list)
        n_val = int(math.ceil(n_sample * ratio))  # 测试样本数
        n_train = n_sample - n_val  # 训练样本数
    
        tra_images = all_image_list[0:n_train]
        tra_labels = all_label_list[0:n_train]
        tra_labels = [int(float(i)) for i in tra_labels]
        val_images = all_image_list[n_train:-1]
        val_labels = all_label_list[n_train:-1]
        val_labels = [int(float(i)) for i in val_labels]
    
        return tra_images, tra_labels, val_images, val_labels


**定义函数get_batch,生成训练批次数据**

    # --------------------生成Batch----------------------------------------------
    
    # step1:将上面生成的List传入get_batch() ,转换类型,产生一个输入队列queue,因为img和lab
    # 是分开的,所以使用tf.train.slice_input_producer(),然后用tf.read_file()从队列中读取图像
    #   image_W, image_H, :设置好固定的图像高度和宽度
    #   设置batch_size:每个batch要放多少张图片
    #   capacity:一个队列最大多少
    定义函数get_batch,生成训练批次数据
    def get_batch(image, label, image_W, image_H, batch_size, capacity):
        # 转换类型
        image = tf.cast(image, tf.string)
        label = tf.cast(label, tf.int32)
    
        # make an input queue
        input_queue = tf.train.slice_input_producer([image, label])
    
        label = input_queue[1]
        image_contents = tf.read_file(input_queue[0])  # read img from a queue
    
        # step2:将图像解码,不同类型的图像不能混在一起,要么只用jpeg,要么只用png等。
        image = tf.image.decode_jpeg(image_contents, channels=3)
            # step3:数据预处理,对图像进行旋转、缩放、裁剪、归一化等操作,让计算出的模型更健壮。
        image = tf.image.resize_image_with_crop_or_pad(image, image_W, image_H)
        image = tf.image.per_image_standardization(image)
    
        # step4:生成batch
        # image_batch: 4D tensor [batch_size, width, height, 3],dtype=tf.float32
        # label_batch: 1D tensor [batch_size], dtype=tf.int32
        image_batch, label_batch = tf.train.batch([image, label],
                                                  batch_size=batch_size,
                                                  num_threads=32,
                                                  capacity=capacity)
        # 重新排列label,行数为[batch_size]
        label_batch = tf.reshape(label_batch, [batch_size])
        image_batch = tf.cast(image_batch, tf.float32)
        return image_batch, label_batch


**model.py——CN模型构建**

    import tensorflow as tf
    
    #定义函数infence,定义CNN网络结构
    #卷积神经网络,卷积加池化*2,全连接*2,softmax分类
    #卷积层1
    def inference(images, batch_size, n_classes):
        with tf.variable_scope('conv1') as scope:
            weights = tf.Variable(tf.truncated_normal(shape=[3,3,3,64],stddev=1.0,dtype=tf.float32),
                                 name = 'weights',dtype=tf.float32)
            biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[64]),
                                 name='biases', dtype=tf.float32)
            conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')
            pre_activation = tf.nn.bias_add(conv, biases)
            conv1 = tf.nn.relu(pre_activation, name=scope.name)
    
        # 池化层1
        # 3x3最大池化,步长strides为2,池化后执行lrn()操作,局部响应归一化,对训练有利。

        with tf.variable_scope('pooling1_lrn') as scope:
            pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1')
            norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')
    
        # 卷积层2
        # 16个3x3的卷积核(16通道),padding=’SAME’,表示padding后卷积的图与原图尺寸一致,激活函数relu()
        with tf.variable_scope('conv2') as scope:
            weights = tf.Variable(tf.truncated_normal(shape=[3, 3, 64, 16], stddev=0.1, dtype=tf.float32),
                                  name='weights', dtype=tf.float32)
    
            biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[16]),
                                 name='biases', dtype=tf.float32)
    
            conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')
            pre_activation = tf.nn.bias_add(conv, biases)
            conv2 = tf.nn.relu(pre_activation, name='conv2')
    
        # 池化层2
        # 3x3最大池化,步长strides为2,池化后执行lrn()操作,
        # pool2 and norm2
        with tf.variable_scope('pooling2_lrn') as scope:
            norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')
            pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2')
    
        # 全连接层3
        # 128个神经元,将之前pool层的输出reshape成一行,激活函数relu()
        with tf.variable_scope('local3') as scope:
            reshape = tf.reshape(pool2, shape=[batch_size, -1])
            dim = reshape.get_shape()[1].value
            weights = tf.Variable(tf.truncated_normal(shape=[dim, 128], stddev=0.005, dtype=tf.float32),
                                  name='weights', dtype=tf.float32)
    
            biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[128]),
                                 name='biases', dtype=tf.float32)
    
            local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
    
        # 全连接层4
        # 128个神经元,激活函数relu()
        with tf.variable_scope('local4') as scope:
            weights = tf.Variable(tf.truncated_normal(shape=[128, 128], stddev=0.005, dtype=tf.float32),
                                  name='weights', dtype=tf.float32)
    
            biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[128]),
                                 name='biases', dtype=tf.float32)
    
            local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')
    
        # dropout层
        #    with tf.variable_scope('dropout') as scope:
        #        drop_out = tf.nn.dropout(local4, 0.8)
    
        # Softmax回归层
        # 将前面的FC层输出,做一个线性回归,计算出每一类的得分
        with tf.variable_scope('softmax_linear') as scope:
            weights = tf.Variable(tf.truncated_normal(shape=[128, n_classes], stddev=0.005, dtype=tf.float32),
                                  name='softmax_linear', dtype=tf.float32)
    
            biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[n_classes]),
                                 name='biases', dtype=tf.float32)
    
            softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')
    
        return softmax_linear

    # -----------------------------------------------------------------------------
    # loss计算
    # 传入参数:logits,网络计算输出值。labels,真实值,在这里是0或者1
    # 返回参数:loss,损失值
    def losses(logits, labels):
        with tf.variable_scope('loss') as scope:
            cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels,
                                                                           name='xentropy_per_example')
            loss = tf.reduce_mean(cross_entropy, name='loss')
            tf.summary.scalar(scope.name + '/loss', loss)
        return loss

    # --------------------------------------------------------------------------
    # loss损失值优化
    # 输入参数:loss。learning_rate,学习速率。
    # 返回参数:train_op,训练op,这个参数要输入sess.run中让模型去训练。
    def trainning(loss, learning_rate):
        with tf.name_scope('optimizer'):
            optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
            global_step = tf.Variable(0, name='global_step', trainable=False)
            train_op = optimizer.minimize(loss, global_step=global_step)
        return train_op

    # -----------------------------------------------------------------------
    # 评价/准确率计算
    # 输入参数:logits,网络计算值。labels,标签,也就是真实值,在这里是0或者1。
    # 返回参数:accuracy,当前step的平均准确率,也就是在这些batch中多少张图片被正确分类了。
    def evaluation(logits, labels):
        with tf.variable_scope('accuracy') as scope:
            correct = tf.nn.in_top_k(logits, labels, 1)
            correct = tf.cast(correct, tf.float16)
            accuracy = tf.reduce_mean(correct)
            tf.summary.scalar(scope.name + '/accuracy', accuracy)
        return accuracy


**train.py——利用D:/ML/flower/input_data/路径下的训练数据,对CNN模型进行训练**

    import input_data
    import model
    
    # 变量声明
    N_CLASSES = 4  # 四种花类型
    IMG_W = 64  # resize图像,太大的话训练时间久
    IMG_H = 64
    BATCH_SIZE = 20
    CAPACITY = 200
    MAX_STEP = 2000  # 一般大于10K
    learning_rate = 0.0001  # 一般小于0.0001
    
    # 获取批次batch
    train_dir = 'F:/input_data'  # 训练样本的读入路径
    logs_train_dir = 'F:/save'  # logs存储路径
    
    # train, train_label = input_data.get_files(train_dir)
    train, train_label, val, val_label = input_data.get_files(train_dir, 0.3)
    # 训练数据及标签
    train_batch, train_label_batch = input_data.get_batch(train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
    # 测试数据及标签
    val_batch, val_label_batch = input_data.get_batch(val, val_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
    
    # 训练操作定义
    train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
    train_loss = model.losses(train_logits, train_label_batch)
    train_op = model.trainning(train_loss, learning_rate)
    train_acc = model.evaluation(train_logits, train_label_batch)
    
    # 测试操作定义
    test_logits = model.inference(val_batch, BATCH_SIZE, N_CLASSES)
    test_loss = model.losses(test_logits, val_label_batch)
    test_acc = model.evaluation(test_logits, val_label_batch)
    
    # 这个是log汇总记录
    summary_op = tf.summary.merge_all()
    
    # 产生一个会话
    sess = tf.Session()
    # 产生一个writer来写log文件
    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
    # val_writer = tf.summary.FileWriter(logs_test_dir, sess.graph)
    # 产生一个saver来存储训练好的模型
    saver = tf.train.Saver()
    # 所有节点初始化
    sess.run(tf.global_variables_initializer())
    # 队列监控
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    
    # 进行batch的训练
    try:
        # 执行MAX_STEP步的训练,一步一个batch
        for step in np.arange(MAX_STEP):
            if coord.should_stop():
                break
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])
    
            # 每隔50步打印一次当前的loss以及acc,同时记录log,写入writer
            if step % 10 == 0:
                print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (step, tra_loss, tra_acc * 100.0))
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)
            # 每隔100步,保存一次训练好的模型
            if (step + 1) == MAX_STEP:
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
    
    except tf.errors.OutOfRangeError:
        print('Done training -- epoch limit reached')
    
    finally:
        coord.request_stop()


**test.py——利用D:/ML/flower/flower_photos/roses路径下的测试数据,查看识别效果**


    import matplotlib.pyplot as plt
    import model
    from input_data import get_files
    
    # 获取一张图片
    def get_one_image(train):
        # 输入参数:train,训练图片的路径
        # 返回参数:image,从训练图片中随机抽取一张图片
        n = len(train)
        ind = np.random.randint(0, n)
        img_dir = train[ind]  # 随机选择测试的图片
    
        img = Image.open(img_dir)
        plt.imshow(img)
        plt.show()
        image = np.array(img)
        return image


    # 测试图片
    def evaluate_one_image(image_array):
        with tf.Graph().as_default():
            BATCH_SIZE = 1
            N_CLASSES = 4
    
            image = tf.cast(image_array, tf.float32)
            image = tf.image.per_image_standardization(image)
            image = tf.reshape(image, [1, 64, 64, 3])
    
            logit = model.inference(image, BATCH_SIZE, N_CLASSES)
    
            logit = tf.nn.softmax(logit)
    
            x = tf.placeholder(tf.float32, shape=[64, 64, 3])
    
            # you need to change the directories to yours.
            logs_train_dir = 'F:/save/'
    
            saver = tf.train.Saver()
    
            with tf.Session() as sess:
    
                print("Reading checkpoints...")
                ckpt = tf.train.get_checkpoint_state(logs_train_dir)
                if ckpt and ckpt.model_checkpoint_path:
                    global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
                    saver.restore(sess, ckpt.model_checkpoint_path)
                    print('Loading success, global_step is %s' % global_step)
                else:
                    print('No checkpoint file found')
    
                prediction = sess.run(logit, feed_dict={x: image_array})
                max_index = np.argmax(prediction)
                if max_index == 0:
                    result = ('这是玫瑰花的可能性为: %.6f' % prediction[:, 0])
                elif max_index == 1:
                    result = ('这是郁金香的可能性为: %.6f' % prediction[:, 1])
                elif max_index == 2:
                    result = ('这是蒲公英的可能性为: %.6f' % prediction[:, 2])
                else:
                    result = ('这是这是向日葵的可能性为: %.6f' % prediction[:, 3])
                return result

    # ------------------------------------------------------------------------
    
    if __name__ == '__main__':
        img = Image.open('F:/input_data/dandelion/1451samples2.jpg')
        plt.imshow(img)
        plt.show()
        imag = img.resize([64, 64])
        image = np.array(imag)
        print(evaluate_one_image(image))


5 项目执行结果

执行train模块,结果如下:
在这里插入图片描述
同时,训练结束后,在电脑指定的训练模型存储路径可看到保存的训练好的模型数据。
在这里插入图片描述

执行test模块,结果如下:

在这里插入图片描述
关闭显示的测试图片后,console查看测试结果如下:
在这里插入图片描述

做一个GUI交互界面

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1523441.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于springboot+vue实现药品信息管理系统项目【项目源码+论文说明】

基于springbootvue实现药品信息管理系统演示 摘要 本文介绍了一种基于SpringBoot的药品信息管理系统的设计与实现。该系统旨在提高药品管理的效率和准确性,包括药品信息的录入、修改、查询和删除、药品入库、出库等功能。该系统采用了SpringBoot框架、MySQL数据库、…

如何快速搭建物联网工业云平台

随着物联网技术的快速发展,物联网工业云平台已经成为推动工业领域数字化转型的重要引擎。合沃作为专业的物联网云服务提供商,致力于为企业提供高效、可靠的物联网工业云平台解决方案。本文将深入探讨物联网工业云平台的功能、解决行业痛点的能力以及如何…

用户数据的FLASH存储与应用(FPGA架构)

该系列为神经网络硬件加速器应用中涉及的模块接口部分,随手记录,以免时间久了遗忘。 一 背景 我们知道,在FPGA做神经网络应用加速时,涉及到权重参数的存储和加载。通常在推理过程中,会将权重参数存储在外部DDR或片上S…

WAAP全站防护是什么,有什么作用

WAAP全站防护是基于风险管理和WAAP理念打造的安全方案,以“体系化主动安全” 取代安全产品的简单叠加,为各类Web、API业务等防御来自网络层和应用层的攻击,帮助企业全面提升Web安全水位和安全运营效率。 主要的特性在于: 1.全周…

19双体系Java学习之数组的Arrays类

数组的Arrays类 ★小贴士 sort方法对数组进行排序,方法调用完成后,数组按升序排列。 binarySearch方法对数组进行二分查找,如果能找到需要查找的元素则返回该元素的下标,否则返回一个负数,详见binarySearch的范例代码。…

CSS:mix-blend-mode 颜色混合

一、属性 mix-blend-mode: normal; //正常 mix-blend-mode: multiply; //正片叠底 mix-blend-mode: screen; //滤色 mix-blend-mode: overlay; //叠加 mix-blend-mode: darken; //变暗 mix-blend-mode: lighten; //变亮 mi…

取钱——动态规划

题目链接:1.取钱 - 蓝桥云课 (lanqiao.cn) 用动态规划的方法,定义一个dp数组,存放从0开始的取钱所需要的钞票数(0就是取0元,所以钞票数也是0) package lanqiao;import java.util.Arrays; import j…

AI视频混剪定时发送|罐头鱼AI视频矩阵获客

AI视频混剪定时发送系统:智能化视频创作与发布一体化解决方案 随着数字内容的快速增长,视频已成为各行业推广和传播的首选方式。然而,许多人在制作高质量视频时面临挑战。现在,有了全新的AI视频混剪定时发送系统,您可以…

二叉树OJ练习

本文旨在讲解有关二叉树的OJ题目,希望读完本文,能让读者都二叉树有更深一步的认识! 正文开始! 106. 根据二叉树创建字符串 算法思想: 根据题目的输出结果,可以观察出如下规律! 1.若左右结点都…

MySQL语法分类 DDL(2)

DDL(2) C(Create):创建 //复制表 create table 表名 like 被复制的表名;//数据类型 1. int : 整数类型 2. double : 小数类型 //double(5,2) 最多五位且保留两位小数 3. date : 日期类型 //只包含年月日 yyyy-MM-dd 4. datetime : 日期 //包含年月日时…

影像质感再升级:JOEL FAMULARO Phantom LUTs让作品焕然一新

JOEL FAMULARO Phantom LUTs是一套专业的电影级别的预设,旨在为电影制作人和视频编辑人员提供高质量的颜色校正和调整工具。它为用户提供了一系列精心设计的色彩预设,旨在帮助摄影师在电影、电视和照片后期制作中快速实现专业且一致的色彩风格。这些预设…

(含代码)利用NVIDIA Triton加速Stable Diffusion XL推理速度

在 NVIDIA AI 推理平台上使用 Stable Diffusion XL 生成令人惊叹的图像 扩散模型正在改变跨行业的创意工作流程。 这些模型通过去噪扩散技术迭代地将随机噪声塑造成人工智能生成的艺术,从而基于简单的文本或图像输入生成令人惊叹的图像。 这可以应用于许多企业用例&…

整型溢出问题及解决之道

【题目描述】 例题2-2 3n+1问题 猜想:对于任意大于1的自然数n,若n为奇数,则将n变为3n+1,否则变为n的一半。 经过若干次这样的变换,一定会使n变为1。例如,3→10→5→16→8→4→2→…

基于Spring Boot+Vue的校园二手交易平台

目录 一、 绪论1.1 开发背景1.2 系统开发平台1.3 系统开发环境 二、需求分析2.1 问题分析2.2 系统可行性分析2.2.1 技术可行性2.2.2 操作可行性 2.3 系统需求分析2.3.1 学生功能需求2.3.2 管理员功能需求2.3.3游客功能需求 三、系统设计3.1 功能结构图3.2 E-R模型3.3 数据库设计…

【蓝桥杯每日一题】填充颜色超详细解释!!!

为了让蓝桥杯不变成蓝桥悲,我决定在舒适的周日再来一道题。 例: 输入: 6 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 输出: 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 2 2 1 1 1 2 2 2 1 1 2 2 2 2 1 1…

Requests教程-17-请求代理设置

上一小节我们学习了requests解决乱码的方法,本小节我们讲解一下requests设置代理的方法。 代理基本原理 代理实际上指的就是代理服务器, 英文叫作proxy server ,它的功能是代理网络用户去取得网络信息。形象地说,它是网络信息的中…

【DFS深度优先搜索专题】【蓝桥杯备考训练】:迷宫、奶牛选美、树的重心、大臣的旅费、扫雷【已更新完成】

目录 1、迷宫(《信息学奥赛一本通》) 2、奶牛选美(USACO 2011 November Contest Bronze Division) 3、树的重心(模板) 4、大臣的旅费(第四届蓝桥杯省赛Java & C A组) 5、扫…

鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:TimePicker)

时间选择组件,根据指定参数创建选择器,支持选择小时及分钟。 说明: 该组件从API Version 8开始支持。后续版本如有新增内容,则采用上角标单独标记该内容的起始版本。 子组件 无 接口 TimePicker(options?: TimePickerOptions)…

CSS学习(1)-选择器

一、基本选择器 1. 通配选择器 作用:可以选中所有的 HTML 元素。 语法: * { 属性名: 属性值; }举例: /* 选中所有元素 */ * { color: orange; font-size: 40px; }主要用于:清除样式。 2. 元素选择器 作用:为页面…

代码随想录 -- 回溯算法

文章目录 回溯算法理论什么是回溯法回溯法的效率回溯法解决的问题理解回溯法回溯法模板 组合问题I描述题解优化 组合总和III描述题解 电话号码的字母组合描述题解 组合总和描述题解 组合总和II描述题解 分割回文串描述题解 复原IP地址描述题解 子集描述题解 子集II描述题解 递增…