R语言实现中介分析(1)

news2024/12/23 5:32:05

中介分析,也称为介导分析,是统计学中的一种方法,它用于评估一个或多个中介变量(也称为中间变量)在自变量和因变量之间关系中所起的作用。换句话说,中介分析用于探索自变量如何通过中介变量影响因变量的机制。

虽然中介效应的存在可能意味着某种因果关系机制,但它并不能直接证明因果关系。因此,在解释中介分析结果时,需要考虑其他可能的解释和变量之间的关系。

#Mediatoion analysis
#install.packages("mediation")
help(package="mediation")
library(mediation)
data(jobs)
#线性结果和中介模型
b <- lm(job_seek ~ treat + econ_hard + sex + age, data=jobs)#这个模型用treat(治疗或干预变量)、econ_hard(经济困难)、sex(性别)和age(年龄)来预测job_seek(求职)。
c <- lm(depress2 ~ treat + job_seek + econ_hard + sex + age, data=jobs)#这个模型用相同的变量treat、econ_hard、sex和age,以及job_seek(现在作为中介变量)来预测depress2(抑郁程度)。
# Estimation via quasi-Bayesian approximation
contcont <- mediate(b, c, sims=50, treat="treat", mediator="job_seek")#这个模型用相同的变量treat、econ_hard、sex和age,以及job_seek(现在作为中介变量)来预测depress2(抑郁程度)。
summary(contcont)#查看中介分析的结果摘要。这个摘要通常包括中介效应的估计值、标准误、置信区间,以及直接效应和间接效应(通过中介变量的效应)的估计。
plot(contcont)#绘制中介分析的结果图
#ACME (Average Causal Mediation Effect): 这是中介变量(在这里是job_seek)的平均因果中介效应,表示处理变量(treat)通过中介变量对结果变量(depress2)的间接影响。
#ADE (Average Direct Effect): 这是处理变量对结果变量的直接效应,即在控制中介变量后的效应。
#Total Effect: 这是处理变量对结果变量的总效应,即直接效应和间接效应之和。

 

这个因果中介分析的结果提供了关于中介变量效应的一些重要估计和置信区间。以下是对结果的解读:

ACME (Average Causal Mediation Effect):
估计值(Estimate)为 -0.0167,这意味着中介变量(可能是求职行为job_seek)平均而言在处理变量(treat)和结果变量(抑郁程度depress2)之间产生了负的间接效应。换句话说,处理通过中介变量减少了抑郁程度,但这一效应相对较小。

95%置信区间(95% CI Lower 和 95% CI Upper)为 [-0.0360, 0.00],这意味着我们不能排除ACME为零的可能性,因为零包含在这个区间内。

p-值为0.20,说明ACME的估计值在统计上并不显著,即我们不能有充足的证据认为中介变量产生了显著的间接效应。

ADE (Average Direct Effect):
估计值为 -0.0424,表示处理变量对结果变量的直接效应(即控制中介变量后的效应)是负的,但同样相对较小。

95%置信区间为 [-0.1042, 0.03],这个区间包括零,因此直接效应在统计上并不显著。

p-值为0.40,进一步支持了直接效应不显著的观点。

Total Effect:
估计值为 -0.0591,表示处理变量对结果变量的总效应是负的。

95%置信区间为 [-0.1294, 0.02],这个区间也包括零,因此总效应在统计上并不显著。

p-值为0.20,与ACME的p-值相同,进一步表明我们没有足够的证据认为总效应是显著的。

Prop. Mediated (Proportion Mediated):
这是中介效应占总效应的比例。估计值为 0.2152,意味着中介变量解释了约21.52%的总效应。但由于置信区间为 [-0.7867, 1.86],这个比例非常不确定,且包括负数,因此我们不能得出关于中介效应比例的具体结论。

p-值为0.24,表明这个比例在统计上并不显著。

Sample Size Used:
分析使用的样本大小为899,这是一个相对较大的样本,通常可以提供较为稳定的估计,但在这里由于效应本身可能较小或不存在,因此即使样本量相对较大,我们仍然不能得出显著的结论。

Simulations:
分析过程中使用了50次模拟来估计标准误和置信区间。模拟次数是一个相对较小的数字,但根据具体情境和计算资源,这可能是一个合理的选择。增加模拟次数可能会提供更准确的估计,但也会增加计算时间。

综上所述,这个因果中介分析的结果并没有提供足够的证据来支持中介变量(job_seek)在处理变量(treat)和结果变量(depress2)之间产生了显著的间接效应。同时,直接效应和总效应也都不显著。因此,我们不能基于这些结果得出关于中介效应存在或重要性的明确结论。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1522320.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python-GIS分析之地理数据空间聚类

地理空间数据聚类是空间分析和地理信息系统(GIS)领域的一项关键技术。这种方法对于理解地理数据固有的空间模式和结构、促进城市规划、环境管理、交通和公共卫生等各个领域的决策过程至关重要。本文探讨了地理空间数据聚类的概念、方法、应用、挑战和未来方向。 当模式出现…

《计算机视觉中的深度学习》之目标检测算法原理

参考&#xff1a;《计算机视觉中的深度学习》 概述 目标检测的挑战&#xff1a; 减少目标定位的准确度减少背景干扰提高目标定位的准确度 目标检测系统常用评价指标&#xff1a;检测速度和精度 提高精度&#xff1a;有效排除背景&#xff0c;光照和噪声的影响 提高检测速度…

wsl ubuntu 安装cuda nvcc环境

wsl ubuntu 安装cuda环境&#xff1a; CUDA Toolkit 11.6 Downloads | NVIDIA DeveloperDownload CUDA Toolkit 11.6 for Linux and Windows operating systems.https://developer.nvidia.com/cuda-11-6-0-download-archive?target_osLinux&target_archx86_64&Distri…

介绍一款鼠标无边界软件

"Mouse without Borders" 是一款由微软开发的免费工具&#xff0c;旨在帮助用户在多台计算机之间实现无缝的鼠标和键盘共享。通过 Mouse without Borders&#xff0c;用户可以在一个主控制台上控制多台计算机&#xff0c;就像操作一个大型虚拟桌面一样。 这个工具可…

MySQL安装(Mac系统)

首先要删除本机原有的mysql 停止MySQL服务 sudo /usr/local/mysql/support-files/mysql.server stop不放心可以使用以下命令查询并杀死进程 ps aux | grep mysqld sudo kill <PID>再次尝试停止服务 sudo /usr/local/mysql/support-files/mysql.server stop卸载MySQL&…

C#对ListBox控件中的数据进行的操作

目录 1.添加数据&#xff1a; 2.删除数据&#xff1a; 3.清空数据&#xff1a; 4.选择项&#xff1a; 5.排序&#xff1a; 6.获取选中的项&#xff1a; 7.获取ListBox中的所有项&#xff1a; 8.综合示例 C#中对ListBox控件中的数据进行的操作主要包括添加、删除、清空、…

(一)、机器人时间同步方案分析

1、是否有必要进行时间同步 目前的自动驾驶系统包括 感知、定位、决策规划、控制 等模块&#xff0c;这些模块的正常运行需要依靠各种不同类型的传感器数据的准确 融合。尤其是激光雷达与相机这两种传感器在感、知定位模块中起着至关重要的作用。机械式旋转扫描激光雷达本身较低…

基于FPGA的光纤通信系统的实现的优化技巧与方法

逻辑电路基本框架回顾 跨时钟域同步技术 读写操作相互独立时钟域 A 和 B 不需要一致的相位由专门逻辑控制读写操作的切换 高速数据的乒乓缓存技术

【计算机网络】https的工作原理以及和http的区别

目录 前言 1. HTTP协议存在的问题 2. 什么是HTTPS协议&#xff1f; 3. HTTP和HTTPS有哪些区别&#xff1f; 4. HTTPS的工作原理 加密方式 前言 在日常的Web项目练习中&#xff0c;我们会发现老师会让我们在打开服务器之后使用 http://localhost/...进行项目效果测试和预览…

Spark-Scala语言实战(2)(在IDEA中安装Scala,超详细配图)

之前的文章中&#xff0c;我们学习了如何在windows下下载及使用Scala&#xff0c;但那对一个真正想深入学习Scala的人来说&#xff0c;是不够的&#xff0c;今天我会给大家带来如何在IDEA中安装Scala。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的…

游戏引擎中的动画基础

一、动画技术简介 视觉残留理论 - 影像在我们的视网膜上残留1/24s。 游戏中动画面临的挑战&#xff1a; 交互&#xff1a;游戏中的玩家动画需要和场景中的物体进行交互。实时&#xff1a;最慢需要在1/30秒内算完所有的场景渲染和动画数据。&#xff08;可以用动画压缩解决&am…

R语言深度学习-5-深度前馈神经网络

本教程参考《RDeepLearningEssential》 本篇我们将学习如何建立并训练深度预测模型。我们将关注深度前馈神经网络 5.1 深度前馈神经网络 我们还是使用之前提到的H2O包&#xff0c;详细可以见之前的博客&#xff1a;R语言深度学习-1-深度学习入门&#xff08;H2O包安装报错解决…

Spring炼气之路(炼气一层)

目录 一、IOC 1.1 控制反转是什么&#xff1f; 1.2 什么是IOC容器&#xff1f; 1.3 IOC容器的作用 1.4 IOC容器存放的是什么&#xff1f; 二、DI 2.1 依赖注入是什么&#xff1f; 2.2 依赖注入的作用 三、IOC案例实现 3.1下载Maven 3.2 配置Maven中的settings.xml文…

Stable Diffusion科普文章【附升级gpt4.0秘笈】

随着人工智能技术的飞速发展&#xff0c;我们越来越多地看到计算机生成的艺术作品出现在我们的生活中。其中&#xff0c;Stable Diffusion作为一种创新的图像生成技术&#xff0c;正在引领一场艺术创作的革命。本文将为您科普Stable Diffusion的相关知识&#xff0c;带您走进这…

部署一个本地的ChatGPT(Ollama)

一 下载Ollama Ollama下载地址&#xff1a;https://ollama.com/download 下载完后 二 安装运行 双击下载好的OllamaSetup.exe开发 安装Ollama: 安装完成后&#xff0c;多了一个Ollama的菜单如下图 &#xff1a; Ollama安装好默认是配置开机运行&#xff0c;如果没有运行可以在…

python的opencv最最基础初学

localhost中详解OpenCV的函数imread()和函数imshow(),并利用它们实现对图像的读取和显示_opencv imshow-CSDN博客 其实以下均为numpy 显示一张图片 import cv2 ####opencv读取的格式是BGR import matplotlib.pyplot as plt import numpy as np %matplotlib inline imgcv2.…

Golang协程详解

一.协程的引入 1.通过案例文章引入并发,协程概念 见:[go学习笔记.第十四章.协程和管道] 1.协程的引入,调度模型&#xff0c;协程资源竞争问题 通过上面文章可以总结出Go并发编程原理: 在一个处理进程中通过关键字 go 启用多个协程&#xff0c;然后在不同的协程中完成不同的子任…

Spark-Scala语言实战(1)

在之前的文章中&#xff0c;我们学习了如何在Linux安装Spark以及Scala&#xff0c;想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点赞&#xff0c;谢谢。 Spark及Scala的安装https:/…

图像处理ASIC设计方法 笔记11 像素误差与字长优化

P108 P105 定点误差分析与字长优化 1 像素误差是什么原因导致的? 在本书所说的算法中,像素误差是由几次定点运算累加导致的: 首先由行(列)号与定点正弦/正切值计算出该行(列)的小数平移量,然后将这些小数平移量截取一定字长用来计算插值核,再将这些插值核也截取一…

VMware Worksation 问题

几个晚上在虚拟机装了好多东西&#xff0c;配置mysql&#xff0c;配置docker、Git工具等等&#xff0c;可能废寝忘食导致太困强制关了虚拟机&#xff0c;结果第二天晚上回来发现打不开&#xff0c;心态直接崩了。 问题&#xff1a; 疯狂百度告知要删除后缀为.lck的文件夹及文件…