【Unity】程序创建Mesh(二)MeshRenderer、光照、Probes探针、UV信息、法线信息

news2025/1/10 11:55:10

文章目录

  • 接上文
  • MeshRenderer(网格渲染器)
    • Materials(材质)
    • Material和Mesh对应
    • Lighting光照
    • Lightmapping
      • 材质中的光照
    • 光源类型
    • 阴影
    • 全局光照
    • Probes(探针)
    • Ray Tracing(光线追踪)
    • Additional Settings
  • UV信息
  • 法线信息
  • 最后


接上文

前面一篇文章【Unity】程序创建Mesh(一)Mesh网格、代码创建模型、顶点信息、三角形信息、MeshFilter、MeshRenderer讲了一部分使用代码创建网格的内容,这一节针对渲染相关的内容再做详解。

MeshRenderer(网格渲染器)

MeshRenderer是Unity中的一个组件,属于UnityEngine命名空间下的一个类,它继承自Renderer类。MeshRenderer的主要作用是渲染由MeshFilter或TextMesh插入的网格。它根据物体的Transform组件的定义位置,从网格过滤器(Mesh Filter)获取几何形状,并在该位置进行渲染。

MeshRenderer还有一些重要的属性,例如Cast Shadows(投射阴影),当这个属性被启用时,如果场景中有创建光照阴影的光源,MeshRenderer将会使对应的Mesh产生阴影。下面简单说明一下MeshRenderer的各项属性。
MeshRenderer设置

Materials(材质)

Materials是MeshRenderer中最重要的属性,它控制了网格的材质表现。通过修改MeshRenderer的Materials属性,我们可以改变物体的外观,如颜色、纹理、光照反应等。

具体来说,MeshRenderer的Materials属性是一个Material数组,这意味着一个MeshRenderer可以拥有多个材质。每个材质可以独立地应用到网格的不同部分,从而实现复杂的视觉效果。例如,一个游戏角色的身体部分可能使用一种材质,而武器或服装则使用另一种材质。

在Unity的编辑器中,你可以通过MeshRenderer组件的Inspector窗口来查看和编辑Materials属性。你可以添加、删除或重新排序材质,还可以为每个材质设置不同的Shader和纹理。

在代码中,你也可以通过脚本来操作MeshRenderer的Materials属性。例如,你可以创建一个新的Material,并将其添加到MeshRenderer的Materials数组中,或者修改现有材质的属性来改变物体的外观。

需要注意的是,当你修改MeshRenderer的Materials属性时,你是在修改该MeshRenderer的本地材质副本。如果你希望多个MeshRenderer共享相同的材质,你应该使用Material的实例化(Instance)而不是复制(Clone)。这样,当你修改共享材质的属性时,所有使用该材质的MeshRenderer都会受到影响。

此外,MeshRenderer的Materials属性与MeshFilter的mesh属性是相辅相成的。MeshFilter定义了物体的形状和结构,而MeshRenderer则通过Materials属性定义了这些形状和结构如何被渲染和表现出来。通过合理使用这两个组件,你可以创建出丰富多样的游戏世界和角色。
Materials材质设置

Material和Mesh对应

在Unity中,当你为MeshRenderer组件分配多个材质时,你需要确保这些材质与你的Mesh的子网格(Submeshes)正确对应。Mesh可以由多个子网格组成,每个子网格可以独立地应用一个材质。

为了将多个材质与Mesh的子网格对应起来,你需要按照以下步骤操作:

  1. 创建子网格:在你的Mesh中,使用SetTriangles方法为不同的部分设置三角形索引,从而创建子网格。每个子网格应包含一组连续的三角形索引。
int[] triangles0 = { /* 三角形索引数组,对应第一个子网格 */ };  
int[] triangles1 = { /* 三角形索引数组,对应第二个子网格 */ };  
// ...更多子网格  
  
mesh.SetTriangles(triangles0, 0); // 设置第一个子网格  
// 设置第二个子网格,注意第二个参数是上一个子网格的三角形数量  
// 第三个参数submeshIndex用于指定子网格的索引。索引从0开始,每个子网格的索引必须唯一。
mesh.SetTriangles(triangles1, triangles0.Length, submeshIndex: 1); 
// ...为更多子网格设置三角形
  1. 分配材质:在你的MeshRenderer组件中,为Materials属性分配一个与你的子网格数量相同的材质数组。
Material[] materials = new Material[mesh.subMeshCount];  
materials[0] = new Material(Shader.Find("SomeShader")); // 为第一个子网格分配材质  
materials[1] = new Material(Shader.Find("AnotherShader")); // 为第二个子网格分配材质  
// ...为更多子网格分配材质  
  
meshRenderer.materials = materials; // 将材质数组分配给MeshRenderer

这里mesh.subMeshCount将返回你的Mesh中子网格的数量,你需要确保分配的材质数组长度与子网格数量相匹配。

  1. 确保索引对应:重要的是要确保你设置的三角形索引与子网格的材质分配正确对应。如果你错误地分配了材质,或者三角形索引与子网格不对应,渲染结果可能会出现问题。
  2. 更新Mesh:在修改了Mesh的结构或材质后,确保调用mesh.RecalculateBounds()来更新Mesh的边界信息,这对于正确的渲染和碰撞检测很重要。
mesh.RecalculateBounds();

通过以上步骤,你可以将多个材质与你创建的Mesh的子网格对应起来,从而实现复杂的材质和渲染效果。这对于创建具有不同材质部分的物体(如角色模型的不同部位使用不同纹理)非常有用。

Lighting光照

MeshRenderer中提供了对于 Lighting(光照)的设置功能,它与场景中的光源(Lights)以及材质(Materials)相互作用,以产生光照效果。
材质定义了物体如何与光源进行交互。材质中的Shader决定了如何计算光照。例如,一个材质可能使用Phong Shading模型来计算光照,而另一个可能使用Lambert Shading。Shader代码决定了光照如何影响物体的颜色、亮度、高光等。

光照的设置内容如下:
光照设置

Lightmapping

如果勾选了 Lighting 中的 Contribute Global Illuminatior 选项,MeshRenderer 中就会出现对于 Lightmapping 的相关设置内容。
Lightmapping
Lightmapping设置内容如下:
Lightmapping设置

材质中的光照

在材质中可以设置多种光照属性,如:

  • Albedo(反照率):物体的基础颜色。
  • Metallic(金属度):物体表面的金属程度,影响高光反射。
  • Smoothness(光滑度):影响高光的大小和强度。
  • Emissive(自发光):物体自身发出的颜色,不受光源影响。

这些属性在Shader中用于计算光照结果。

光源类型

Unity支持多种光源类型,每种类型都有其独特的光照属性:

  • Directional Light(方向光):模拟来自无限远处的光源,如太阳。它有一个方向和一个颜色。
  • Point Light(点光源):从一个点向所有方向发射光线的光源。它有一个位置、颜色和范围。
  • Spot Light(聚光灯):从一个点发射光线,但只在一个圆锥体内照亮物体。它有一个位置、颜色、范围和圆锥体的角度。
  • Area Light(区域光):模拟一个具有面积的光源,可以产生更柔和的阴影。

阴影

阴影是光照系统中的一个重要部分。在Unity中,你可以为光源启用阴影,并选择阴影的类型(如硬阴影或软阴影)。阴影的渲染质量和性能消耗取决于你选择的阴影设置。

MeshRenderer 会根据场景中的光源和物体的材质来计算阴影。如果物体的材质或光源没有启用阴影,那么该物体就不会产生或接收阴影。

全局光照

全局光照(Global Illumination, GI)考虑了场景中所有光源对物体的间接照明影响。在Unity中,你可以使用实时全局光照(Realtime GI)或烘焙全局光照(Baked GI)来模拟这种效果。MeshRenderer 会与这些全局光照系统相互作用,以产生更真实的光照效果。

Probes(探针)

在Unity中,MeshRenderer中的Probes主要指的是光照探针(Light Probes)反射探针(Reflection Probes),它们用于在场景中获取光照和反射信息,以增强渲染的真实感。

  • 光照探针用于在光照计算中获取场景中的光照信息。它们能够捕捉场景中的光照数据,并在运行时为物体提供光照信息。这样,即使物体在场景中移动,也能根据最近的光照探针进行光照计算,实现平滑的光照过渡。光照探针的设置可以在MeshRenderer组件中进行调整,默认情况下,所有游戏对象都会使用光照探针,并在场景中改变位置时在最近的探针之间进行混合。
  • 反射探针则用于在反射计算中获取场景中的反射信息。它们能够捕捉场景中的环境反射数据,使得物体能够呈现出更真实的反射效果。通过反射探针,游戏开发者可以在物体表面模拟出周围环境的倒影和反射,提升游戏画面的质感。

在使用光照探针和反射探针时,开发者需要注意正确设置MeshRenderer组件的相关参数,以确保探针能够正确工作。此外,根据场景的具体需求和性能考虑,开发者还需要合理选择探针的数量和分布,以达到最佳的光照和反射效果。

探针的设置内容如下:
在这里插入图片描述

Ray Tracing(光线追踪)

在使用High Definition Render Pipeline(HDRP)管线时,在MeshRenderer中可以设置光追模式,分别为:

  • Off:关闭;
  • Static:静态光追;
  • Dynamic Transform(默认):动态变换;
  • Dynamic Geometry:动态几何。

关于HDRP的详细内容,可以直接到 Unity 手册中去查看,内容还是比较全面的,这里附上链接:高清渲染管线 (High Definition Render Pipeline)用户手册

Additional Settings

额外属性设置:
在这里插入图片描述

UV信息

// 设置网格的UV坐标(可选,但通常用于纹理映射)
Vector2[] uvs = new Vector2[]
{
    new Vector2(0, 0),
    new Vector2(1, 0),
    new Vector2(1, 1),
    new Vector2(0, 1)
};
mesh.uv = uvs;

设置Mesh的UV坐标的基本原理主要是为了实现纹理映射,确保纹理能够正确地贴合到三维模型的表面上。UV坐标是一个二维坐标系,其中U代表横向(水平)坐标,V代表纵向(垂直)坐标。在三维建模中,每个顶点都可以被赋予UV坐标,这些坐标用于将纹理映射到多边形表面上。

UV坐标的取值范围通常在0到1之间,包括0和1两个端点。这样无论图像的像素分辨率是多少,UV坐标都可以换算成贴图的像素坐标。通过将纹理图像的每个像素与模型表面的顶点进行对应,我们可以实现纹理的精确映射。

在设置UV坐标时,需要考虑到模型的几何形状和纹理的特点。不同的模型部分可能需要使用不同的UV坐标,以确保纹理能够正确地贴合到模型的各个表面上。同时,还需要注意UV坐标的连续性和平滑性,以避免在纹理映射时出现明显的接缝或拉伸现象。

除了基本的UV坐标设置外,还可以使用一些高级技术来优化纹理映射效果,比如UV展开和UV打包。UV展开是将三维模型的表面展开到二维平面上,以便更好地编辑和调整UV坐标。UV打包则是将多个模型的UV坐标合并到一个纹理图中,以提高纹理的利用效率和渲染性能。

总之,设置Mesh的UV坐标是实现纹理映射的关键步骤之一,需要根据模型的几何形状和纹理特点进行精确的设置和调整。

法线信息

// 设置网格的法线(可选,但通常用于光照计算)
Vector3[] normals = new Vector3[]
{
    Vector3.up,
    Vector3.up,
    Vector3.up,
    Vector3.up
};
mesh.normals = normals;

在Unity中使用代码来创建Mesh并指定法线信息时,需要提供一个Vector3数组,数组中每个元素对应一个Mesh顶点(一一对应),用于指定每个顶点的法线方向。如果你的Mesh是由平滑的面组成,你可能还需要计算平滑法线,这通常涉及到对相邻面的法线进行平均。

最后

关于UV和法线相关的更细节的内容,我会在渲染章节再进行细致的学习和记录(详见文档下方的目录),欢迎大家一起学习。


更多内容请查看总目录【Unity】Unity学习笔记目录整理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1520398.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

家具工厂5G智能制造数字孪生可视化平台,推进家具行业数字化转型

家具制造5G智能制造工厂数字孪生可视化平台,推进家具行业数字化转型。随着科技的飞速发展,家具制造业正迎来一场前所未有的数字化转型。在这场家具制造业转型中,5G智能制造工厂数字孪生可视化平台发挥着至关重要的作用。 5G智能制造工厂数字孪…

基于Java+SpringMVC+vue+element宠物管理系统设计实现

基于JavaSpringMVCvueelement宠物管理系统设计实现 博主介绍:5年java开发经验,专注Java开发、定制、远程、文档编写指导等,csdn特邀作者、专注于Java技术领域 作者主页 央顺技术团队 Java毕设项目精品实战案例《1000套》 欢迎点赞 收藏 ⭐留言 文末获取源…

橡胶工厂5G智能制造数字孪生可视化平台,推进橡胶工业数字化转型

橡胶5G智能制造工厂数字孪生可视化平台,推进橡胶工业数字化转型。随着信息技术的迅猛发展和智能制造的不断推进,数字化转型已成为制造业转型升级的重要方向。橡胶工业作为传统制造业的重要领域,正面临着产业升级和转型的迫切需求。橡胶5G智能…

【SpringBoot】头条新闻项目实现CRUD登录注册

文章目录 一、头条案例介绍二、技术栈介绍三、前端搭建四、基于SpringBoot搭建项目基础架构4.1 数据库脚本执行4.2 搭建SprintBoot工程4.2.1 导入依赖:4.2.2 编写配置4.2.3 工具类准备 4.3 MybatisX逆向工程 五、后台功能开发5.1 用户模块开发5.1.1 jwt 和 token 介绍5.1.2 jwt…

通付盾Web3专题 | SharkTeam:2023年加密货币犯罪分析报告

2023年,Web3行业共经历了940多起大大小小的安全事件,同比2022年增长了超过50%,损失金额达到17.9亿美元。其中,第三季度发生的安全事件最多(360起),损失最大(7.4亿美元)&a…

【NR 定位】3GPP NR Positioning 5G定位标准解读(十五)-UL-TDOA 定位

前言 3GPP NR Positioning 5G定位标准:3GPP TS 38.305 V18 3GPP 标准网址:Directory Listing /ftp/ 【NR 定位】3GPP NR Positioning 5G定位标准解读(一)-CSDN博客 【NR 定位】3GPP NR Positioning 5G定位标准解读(…

【ARM】DS中Coretex-M处理器的常用寄存器介绍

【更多软件使用问题请点击亿道电子官方网站查询】 1、 文档目标 了解ArmDS中Coretex-M处理器的常用寄存器的名称及作用。 2、 问题场景 在对Coretex-M处理器进行开发时,了解常用寄存器的名称及作用,可以: 编写正确的程序: 寄存器是程序员用…

【JavaEE -- 多线程3 - 多线程案例】

多线程案例 1.单例模式1.1 饿汉模式的实现方法1.2 懒汉模式的实现方法 2. 阻塞队列2.1 引入生产消费者模型的意义:2.2 阻塞队列put方法和take方法2.3 实现阻塞队列--重点 3.定时器3.1 定时器的使用3.2 实现定时器 4 线程池4.1 线程池的使用4.2 实现一个简单的线程池…

突破编程_前端_ACE编辑器(概述)

1 ACE 框架简介 ACE 框架是一个强大且灵活的前端文本编辑器框架,它提供了一套全面的 API 和丰富的功能,使得开发者能够轻松地在 Web 应用中集成功能强大的代码编辑器。ACE 编辑器不仅适用于在线代码编辑,还广泛应用于文档编辑、实时协作、富…

C语言- strcat(拼接函数的使用和模拟)

strcat&#xff08;拼接函数的使用和模拟&#xff09; strcat的语法 strcat 是 C 语言标准库中的一个字符串拼接函数&#xff0c;它用于将一个字符串&#xff08;source&#xff09;拼接到另一个字符串&#xff08;destination&#xff09;的末尾。该函数定义在 <string.h…

机器学习介绍

监督学习 监督学习涉及使用某种算法来分析过去的观察并从中学习&#xff0c;从而使您能够预测未来的事件。 监督学习的目标是提出或推断出一种近似映射函数&#xff0c;该函数可以应用于一个或多个输入变量&#xff0c;并产生输出变量或结果。 训练过程涉及采用非特征和标签的…

3.14号arm

1. 计算机基础理论 1.1 计算机的组成 输入设备&#xff1a;将数据转换成计算机可以识别&#xff0c;存储&#xff0c;处理的形式&#xff0c;发送到计算机中 输出设备&#xff1a;将计算机对程序和数据的运算结果输送到外部的设备 存储器&#xff1a;用于将数据保存的模块。 …

代码随想录刷题day24|回溯理论基础组合问题

文章目录 day24学习内容一、修剪二叉搜索树1.1、什么是回溯法1.2、递归与回溯1.3、回溯法的效率1.4、回溯法解决的问题类型1.5、如何理解回溯法1.6、回溯算法模板 二、组合问题2.1、思路2.2、正确写法-没有剪枝2.2.1、为什么不能写i < n2.2.2、为什么不能写startIndex02.2.3…

phpcms头像上传漏洞引发的故事

目录 关键代码 第一次防御 第一次绕过 第二次防御 第二次绕过 第三次防御 第三次绕过 如何构造一个出错的压缩包 第四次防御 第四次绕过 本篇文章是参考某位大佬与开发人员对于文件包含漏洞的较量记录下的故事&#xff0c;因为要学习文件包含漏洞&#xff0c;就将大佬…

什么是 HTTPS?它是如何解决安全性问题的?

什么是 HTTPS&#xff1f; HTTPS&#xff08;HyperText Transfer Protocol Secure&#xff09;是一种安全的通信协议&#xff0c;用于在计算机网络上安全地传输超文本&#xff08;如网页、图像、视频等&#xff09;和其他数据。它是 HTTP 协议的安全版本&#xff0c;通过使用加…

鸿蒙Harmony应用开发—ArkTS声明式开发(容器组件:Grid)

网格容器&#xff0c;由“行”和“列”分割的单元格所组成&#xff0c;通过指定“项目”所在的单元格做出各种各样的布局。 说明&#xff1a; 该组件从API Version 7开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 子组件 仅支持GridItem…

定时执行专家:自动截屏功能在电脑监控中的卓越应用

一、软件简介 定时执行专家&#xff0c;作为一款专业级的定时任务执行软件&#xff0c;不仅功能强大&#xff0c;而且操作简便。它支持25种任务类型&#xff0c;其中自动截屏功能尤为出色。通过这一功能&#xff0c;用户可以设定定时自动截取电脑屏幕&#xff0c;从而实现对电…

Java微服务轻松部署服务器

我们在日常开发微服务之后需要再服务器上面部署&#xff0c;那么如何进行部署呢&#xff0c;先把微服务的各个服务和中间件以及对应的端口列举出来&#xff0c;都打包成镜像&#xff0c;以及前端代码部署的nginx&#xff0c;使用docker-compose启动&#xff0c;访问服务器nginx…

系统重构后,对项目定制开发的兼容性问题

公司自实施产品线战略以来&#xff0c;基本推翻了全部旧有业务模块。后续以标准产品二次开发的模式进行项目开发。但在涉及到一些旧有系统二期、三期升级改造过程中。不可避免的需要解决旧有系统的客户定制化开发兼容性问题。也就是旧有系统定制开发的模块不能丢弃。重新开发从…

C++Qt学习——QPushButton、QRadioButton(单选按钮)、QCheckBox(复选按钮)

目录 1、QPushButton 1.1、创建一个新的项目&#xff0c;转到UI界面拖一个Push Button 1.2、Push Button的常用信号主要有四个&#xff0c;分别为 clicked(), pressed(), released(), toggled() 1.2.1、按住Push Button右键转到槽&#xff0c;选择信号函数 1.2.2、在Widget…