考研复习C语言进阶(3)

news2025/1/11 0:20:46

结构体
1 结构体的声明


1.1 结构的基础知识


结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。


1.2 结构的声明

struct tag
{
member-list;
}variable-list;

 例如描述一个学生:

struct Stu
{
char name[20];//名字
int age;//年龄
char sex[5];//性别
char id[20];//学号
}; //分号不能丢

1.3 特殊的声明

在声明结构的时候,可以不完全的声明。
比如:

//匿名结构体类型
struct
{
int a;
char b;
float c;
}x;
struct
{
int a;
char b;
float c;
}a[20], *p;

上面的两个结构在声明的时候省略掉了结构体标签(tag)。
那么问题来了?

//在上面代码的基础上,下面的代码合法吗?
p = &x;

警告:
编译器会把上面的两个声明当成完全不同的两个类型。
所以是非法的。


1.4 结构的自引用


在结构中包含一个类型为该结构本身的成员是否可以呢? 

//代码1
struct Node
{
int data;
struct Node next;
};
//可行否?
如果可以,那sizeof(struct Node)是多少?

 正确的自引用方式:

//代码2
struct Node
{
int data;
struct Node* next;
};

注意:

//代码3
typedef struct
{
int data;
Node* next;
}Node;
//这样写代码,可行否?
//解决方案:
typedef struct Node
{
int data;
struct Node* next;
}Node;

1.5 结构体变量的定义和初始化


有了结构体类型,那如何定义变量,其实很简单

struct Point
{
int x;
int y;
}p1; //声明类型的同时定义变量p1
struct Point p2; //定义结构体变量p2
//初始化:定义变量的同时赋初值。
struct Point p3 = {x, y};
struct Stu     //类型声明
{
char name[15];//名字
int age;    //年龄
};
struct Stu s = {"zhangsan", 20};//初始化
struct Node
{
int data;
struct Point p;
struct Node* next;
}n1 = {10, {4,5}, NULL}; //结构体嵌套初始化
struct Node n2 = {20, {5, 6}, NULL};//结构体嵌套初始化

1.6 结构体内存对齐


我们已经掌握了结构体的基本使用了。
现在我们深入讨论一个问题:计算结构体的大小。
这也是一个特别热门的考点: 结构体内存对齐

//练习1
struct S1
{
char c1;
int i;
char c2;
};
printf("%d\n", sizeof(struct S1));
//练习2
struct S2
{
char c1;
char c2;
int i;
};
printf("%d\n", sizeof(struct S2));
//练习3
struct S3
{
double d;
char c;
int i;
};
printf("%d\n", sizeof(struct S3));
//练习4-结构体嵌套问题
struct S4
{
char c1;
struct S3 s3;
double d;
};
printf("%d\n", sizeof(struct S4));

  练习一: 12

练习二: 8

练习三:16

练习四: 32

考点
如何计算?
首先得掌握结构体的对齐规则

1. 第一个成员在与结构体变量偏移量为0的地址处。
2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。
VS中默认的值为8
3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。

5.数组是按照数组元素类型去对齐的

为什么存在内存对齐?
大部分的参考资料都是如是说的:
1. 平台原因(移植原因):
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特
定类型的数据,否则抛出硬件异常。

2. 性能原因:
数据结构(尤其是栈)应该尽可能地在自然边界上对齐。
原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访
问。
总体来说:
结构体的内存对齐是拿空间来换取时间的做法。 

那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:
让占用空间小的成员尽量集中在一起。

//例如:
struct S1
{
char c1;
int i;
char c2;
};
struct S2
{
char c1;
char c2;
int i;
};

S1和S2类型的成员一模一样,但是S1和S2所占空间的大小有了一些区别

S1:12

S2:8

1.7 修改默认对齐数


之前我们见过了 #pragma 这个预处理指令,这里我们再次使用,可以改变我们的默认对齐数。 

#include <stdio.h>
#pragma pack(8)//设置默认对齐数为8
struct S1
{
char c1;
int i;
char c2;
};    
#pragma pack()//取消设置的默认对齐数,还原为默认
#pragma pack(1)//设置默认对齐数为1
struct S2
{
char c1;
int i;
char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
int main()
{
  //输出的结果是什么?
  printf("%d\n", sizeof(struct S1));
  printf("%d\n", sizeof(struct S2));
return 0;
}

结论:
结构在对齐方式不合适的时候,我么可以自己更改默认对齐数 

写一个宏,计算结构体中某变量相对于首地址的偏移,并给出说明

#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE*)0)->MEMBER)

 1.8 结构体传参


直接上代码:

struct S
{
int data[1000];
int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参
void print1(struct S s)
{
printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
printf("%d\n", ps->num);
}
int main()
{
print1(s);  //传结构体
print2(&s); //传地址
return 0;
}

上面的 print1 和 print2 函数哪个好些?
答案是:首选print2函数。
原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的
下降。 

结论:
结构体传参的时候,要传结构体的地址。

2. 位段


结构体讲完就得讲讲结构体实现 位段 的能力。


2.1 什么是位段


位段的声明和结构是类似的,有两个不同:
1.位段的成员必须是 int、unsigned int 或signed int 。
2.位段的成员名后边有一个冒号和一个数字。
比如:

struct A
{
int _a:2;
int _b:5;
int _c:10;
int _d:30;
};

A就是一个位段类型。
那位段A的大小是多少?

printf("%d\n", sizeof(struct A));

.2 位段的内存分配


1. 位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。

//一个例子
struct S
{
char a:3;
char b:4;
char c:5;
char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;
//空间是如何开辟的?

 2.3 位段的跨平台问题


1. int 位段被当成有符号数还是无符号数是不确定的。
2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机
器会出问题。
3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是
舍弃剩余的位还是利用,这是不确定的。
总结:
跟结构相比,位段可以达到同样的效果,但是可以很好的节省空间,但是有跨平台的问题存在。

2.4 位段的应用 

3. 枚举


枚举顾名思义就是一一列举。
把可能的取值一一列举。
比如我们现实生活中:
一周的星期一到星期日是有限的7天,可以一一列举。

性别有:男、女、保密,也可以一一列举。
月份有12个月,也可以一一列举
这里就可以使用枚举了。


3.1 枚举类型的定义 

enum Day//星期
{
Mon,
Tues,
Wed,
Thur,
Fri,
Sat,
Sun
};
enum Sex//性别
{
MALE,
FEMALE,
SECRET
};
enum Color//颜色
{
RED,
GREEN,
BLUE
};

以上定义的 enum Day , enum Sex , enum Color 都是枚举类型。
{}中的内容是枚举类型的可能取值,也叫 枚举常量 。
这些可能取值都是有值的,默认从0开始,一次递增1,当然在定义的时候也可以赋初值。
例如:

enum Color//颜色
{
RED=1,
GREEN=2,
BLUE=4
};

 3.2 枚举的优点


为什么使用枚举?
我们可以使用 #define 定义常量,为什么非要使用枚举?
枚举的优点:
1. 增加代码的可读性和可维护性
2. 和#define定义的标识符比较枚举有类型检查,更加严谨。
3. 防止了命名污染(封装)
4. 便于调试
5. 使用方便,一次可以定义多个常量

 3.3 枚举的使用

enum Color//颜色
{
RED=1,
GREEN=2,
BLUE=4
};
enum Color clr = GREEN;//只能拿枚举常量给枚举变量赋值,才不会出现类型的差异。
clr = 5;  //不可以

4. 联合(共用体)


4.1 联合类型的定义


联合也是一种特殊的自定义类型
这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)。
比如

//联合类型的声明
union Un
{
char c;
int i;
};
//联合变量的定义
union Un un;
//计算连个变量的大小
printf("%d\n", sizeof(un));

共用同一块空间,但不能同时使用, 

4.2 联合的特点


联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联
合至少得有能力保存最大的那个成员)。

union Un
{
int i;
char c;
};
union Un un;
// 下面输出的结果是一样的吗?
printf("%d\n", &(un.i));
printf("%d\n", &(un.c));
//下面输出的结果是什么?
un.i = 0x11223344;
un.c = 0x55;
printf("%x\n", un.i);

面试题:

判断当前计算机的大小端存储

4.3 联合大小的计算


联合的大小至少是最大成员的大小。
当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。
比如:

union Un1
{
char c[5];
int i;
};
union Un2
{
short c[7];
int i;
};
//下面输出的结果是什么?
printf("%d\n", sizeof(union Un1));
printf("%d\n", sizeof(union Un2));

8,16

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1520295.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java开发从入门到精通(九):Java的面向对象OOP:成员变量、成员方法、类变量、类方法、代码块、单例设计模式

Java大数据开发和安全开发 &#xff08;一)Java的变量和方法1.1 成员变量1.2 成员方法1.3 static关键字1.3.1 static修饰成员变量1.3.1 static修饰成员变量的应用场景1.3.1 static修饰成员方法1.3.1 static修饰成员方法的应用场景1.3.1 static的注意事项1.3.1 static的应用知识…

03-java基础-运算符(数据类型转换)、原码、补码、反码

一、运算符 一、1、算术运算符 在代码中如果有小数参与运算&#xff0c;结果有可能会不精确。 一、1.1、数字相加 一、1.1.1、类型转换的分类&#xff08;2种&#xff09; 一、1.1.1.1、类型转换的分类1-----隐式转换 一、1.1.1.1、类型转换的分类2-----强制转换 一、1.2、字符…

海外媒体宣发套餐推广:如何选择最佳方案-华媒舍

在信息时代&#xff0c;传播和宣传已经成为各个行业发展的关键部分。尤其对于拓展国际市场的企业来说&#xff0c;海外媒体宣发更是至关重要。由于各种原因&#xff0c;很多企业在选择海外媒体宣发套餐时感到困惑。本文将为您介绍如何选择最佳的海外媒体宣发方案。 1.了解目标市…

工匠的发展与兴衰趋势-机器人篇

这是一篇纯纯调侃的博客&#xff0c;如有雷同纯属意外。 之前&#xff0c;写过&#xff1a; 从2050回顾2020&#xff0c;职业规划与技术路径&#xff08;节选&#xff09; 从2050回顾2020&#xff0c;职业规划与技术路径&#xff08;节选&#xff09;补充 未来以“工”为主的…

LarkXR上新了 | Apollo多终端与XR体验的优化创新

作为领先的数字平行世界产品技术提供方&#xff0c;「Paraverse平行云」一直致力于为企业和开发者提供企业级实时云渲染解决方案。其多终端接入产品LarkXR Apollo&#xff0c;基于底层Runtime技术&#xff0c;实现了在Windows、Linux、MacOS、Android、iOS等多种操作系统下&…

centos破解root密码以及如何防止他人破解root密码

目录 破解root密码 服务器重启 1.再重启页面上下选择第一个按e进入内核编辑模式 2.找到linux16开头的一行&#xff0c;光标移动到最后添加 init/bin/sh Ctrlx 保存 3.进入单用户模式 4.重新挂在根分区 5.关闭selinux 6.更新密码 passwd 7.在根分区下面创建一个隐藏文件…

字符串函数(C语言详解)

1.字符串简介 字符串是一串连续的且以\0结尾的字符 char arr[]"zhangsan";//将字符串存到数组里面 char*a"lisi";//常量字符串 char arr1[]{z,h,a,n,g};//字符数组 注意&#xff1a; 1.以第一种形式初始化字符串时&#xff0c;计算机会自动在字符串末尾加…

leetcode-打家劫舍专题系列(动态规划)

198.打家劫舍 你是一个专业的小偷&#xff0c;计划偷窃沿街的房屋。每间房内都藏有一定的现金&#xff0c;影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统&#xff0c;如果两间相邻的房屋在同一晚上被小偷闯入&#xff0c;系统会自动报警。 给定一个代表每个…

C# WPF中设置图标时出现TypeConverterMarkupExtension异常

异常内容为&#xff1a;System.Windows.Baml2006.TypeConverterMarkupExtension 是因为有些地方比如菜单和左上角默认的图标等&#xff0c;只能使用ico格式的文件&#xff0c;如果设置的是png格式的文件&#xff0c;就会出现此错误&#xff01;通过在线转ico的方式把png转换一…

【Maven学习笔记】Maven入门教程(适合新手反复观看学习)

Maven学习笔记 Maven的简要介绍Maven的安装和配置Maven的安装Maven安装的常用配置 Maven的使用入门编写pom编写主代码编写测试代码打包和运行使用Archetype生成项目骨架 Maven核心概念的阐述坐标案例分析依赖依赖的范围传递性依赖依赖范围依赖调节可选依赖Maven依赖常用的技巧 …

《ARM汇编与逆向工程》读书心得与实战体验

&#x1f3ac; 江城开朗的豌豆&#xff1a;个人主页 &#x1f525; 个人专栏 :《 VUE 》 《 javaScript 》 &#x1f4dd; 个人网站 :《 江城开朗的豌豆&#x1fadb; 》 ⛺️ 生活的理想&#xff0c;就是为了理想的生活 ! 目录 &#x1f4d8; 一、引言 &#x1f4dd; 二、…

vite打包流程和原理

文章目录 打包原理Vite比Webpack快&#xff1f;在生产环境下的表现启动项目后&#xff0c;完成加载比较慢&#xff1f;Esbuild & Rollup热更新 打包原理 vite利用了ES module这个特性&#xff0c;使用vite运行项目时&#xff0c;首先会用esbuild进行预构建&#xff0c;将所…

音视频如何快速转二维码?在线生成音视频活码的教程

音频文件的二维码制作步骤是什么样的呢&#xff1f;扫描二维码来展现内容是很流行的一种方式&#xff0c;基本上日常生活中经常会用的图片、音频、视频等都可以使用生成二维码的方式。现在很多的幼儿园或者学校会录制孩子的音频或者视频内容用来展示&#xff0c;那么二维码制作…

Kafka配置SASL_PLAINTEXT权限。常用操作命令,创建用户,topic授权

查看已经创建的topic ./bin/kafka-topics.sh --bootstrap-server localhost:9092 --list 创建topic 创建分区和副本数为1的topic ./bin/kafka-topics.sh --create --bootstrap-server localhost:9092 --topic acltest --partitions 1 --replication-factor 1 创建kafka用户 …

酷轻松气囊按摩护膝全新上线,科技呵护膝部健康

在快节奏的现代生活中&#xff0c;膝部健康问题逐渐引起人们的重视。长时间的站立、行走或运动&#xff0c;都可能对膝部造成不同程度的压力和损伤。 特别是家里有老人一直被老寒腿、关节发凉疼痛困扰的&#xff0c;经常一遇到下雨天&#xff0c;膝盖就不舒服&#xff1b;尤其到…

2 .Gen<I>Cam模块介绍

模块组成&#xff1a;GenApi&#xff0c;SFNC&#xff0c;GenTL&#xff0c;GenDC&#xff0c;GenCP。 首先让我来看下 GenTL (Transport Layer) GenApi( sometimes simply called the GenICam Standard) 传统相机应用程序二次开发&#xff0c;是基于相机厂家提供的sdk。使用…

python:消息推送 - 飞书机器人推送 - 富文本格式

简介&#xff1a;机器人 ( bot ) 是一种自动化的程序&#xff0c;可以用拟人化的身份自动推送消息&#xff0c;或在聊天里与你进行简单的交互。在自动化完成测试任务后&#xff0c;推送测试报告等是一种很常用的收尾工具。 历史攻略&#xff1a; python&#xff1a;消息推送 …

Python爬虫 Day1

要注意看网页的请求方式是request还是get 一、小型爬虫 &#xff08;爬百度首页&#xff09; from urllib.request import urlopen url "https://www.baidu.com" resp urlopen(url) print(resp.read().decode(utf-8)) print("over!") //&#xff01;&am…

DHCP在企业网的部署及安全防范

学习目标&#xff1a; 1. DHCP能够解决什么问题&#xff1f; 2. DHCP服务器如何部署&#xff1f; 3. 私接设备会带来什么问题以及如何防范&#xff1f; 给DHCP服务器配置地址&#xff1a; 地址池&#xff1a; DHCP有2种分配模式&#xff1a;全局分配和接口分配 DHCP enable