免费阅读篇 | 芒果YOLOv8改进111:注意力机制CBAM:轻量级卷积块注意力模块,无缝集成到任何CNN架构中,开销可以忽略不计

news2025/1/17 6:14:16

💡🚀🚀🚀本博客 改进源代码改进 适用于 YOLOv8 按步骤操作运行改进后的代码即可

该专栏完整目录链接: 芒果YOLOv8深度改进教程

该篇博客为免费阅读内容,YOLOv8+CBAM改进内容🚀🚀🚀

文章目录

      • 1. CBAM 论文
      • 2. YOLOv8 核心代码改进部分
      • 2.1 核心新增代码
        • 2.2 修改部分
      • 2.3 YOLOv8-CBAM 网络配置文件
      • 2.4 运行代码
      • 改进说明


1. CBAM 论文

在这里插入图片描述

我们提出了卷积块注意力模块(CBAM),这是一种用于前馈卷积神经网络的简单而有效的注意力模块。 给定中间特征图,我们的模块沿着两个独立的维度(通道和空间)顺序推断注意力图,然后将注意力图乘以输入特征图以进行自适应特征细化。 由于 CBAM 是一个轻量级通用模块,因此它可以无缝集成到任何 CNN 架构中,且开销可以忽略不计,并且可以与基础 CNN 一起进行端到端训练。 我们通过在 ImageNet-1K、MS~COCO 检测和 VOC~2007 检测数据集上进行大量实验来验证我们的 CBAM。 我们的实验表明各种模型的分类和检测性能得到了一致的改进,证明了 CBAM 的广泛适用性。 代码和模型将公开。

在这里插入图片描述

具体细节可以去看原论文:https://arxiv.org/pdf/1807.06521.pdf


2. YOLOv8 核心代码改进部分

2.1 核心新增代码

首先在ultralytics/nn/modules文件夹下,创建一个 cbam.py文件,新增以下代码

import numpy as np
import torch
from torch import nn
from torch.nn import init

class ChannelAttentionModule(nn.Module):
    def __init__(self, c1, reduction=16):
        super(ChannelAttentionModule, self).__init__()
        mid_channel = c1 // reduction
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)

        self.shared_MLP = nn.Sequential(
            nn.Linear(in_features=c1, out_features=mid_channel),
            nn.LeakyReLU(0.1, inplace=True),
            nn.Linear(in_features=mid_channel, out_features=c1)
        )
        self.act = nn.Sigmoid()
        #self.act=nn.SiLU()
    def forward(self, x):
        avgout = self.shared_MLP(self.avg_pool(x).view(x.size(0),-1)).unsqueeze(2).unsqueeze(3)
        maxout = self.shared_MLP(self.max_pool(x).view(x.size(0),-1)).unsqueeze(2).unsqueeze(3)
        return self.act(avgout + maxout)

class SpatialAttentionModule(nn.Module):
    def __init__(self):
        super(SpatialAttentionModule, self).__init__()
        self.conv2d = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=7, stride=1, padding=3)
        self.act = nn.Sigmoid()
    def forward(self, x):
        avgout = torch.mean(x, dim=1, keepdim=True)
        maxout, _ = torch.max(x, dim=1, keepdim=True)
        out = torch.cat([avgout, maxout], dim=1)
        out = self.act(self.conv2d(out))
        return out

class CBAM(nn.Module):
    def __init__(self, c1,c2):
        super(CBAM, self).__init__()
        self.channel_attention = ChannelAttentionModule(c1)
        self.spatial_attention = SpatialAttentionModule()

    def forward(self, x):
        out = self.channel_attention(x) * x
        out = self.spatial_attention(out) * out
        return out   

2.2 修改部分

在ultralytics/nn/modules/init.py中导入 定义在 cbam.py 里面的模块

from .cbam import CBAM

'CBAM' 加到 __all__ = [...] 里面

第一步:
ultralytics/nn/tasks.py文件中,新增

from ultralytics.nn.modules import CBAM

然后在 在tasks.py中配置
找到

        elif m is nn.BatchNorm2d:
        args = [ch[f]]

在这句上面加一个

        elif m is CBAM:
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)

            args = [c1, c2, *args[1:]]

2.3 YOLOv8-CBAM 网络配置文件

新增YOLOv8-CBAM.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 3, CBAM, [1024]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[16, 19, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)

2.4 运行代码

直接替换YOLOv8-CBAM.yaml 进行训练即可

到这里就完成了这篇的改进。

改进说明

这里改进是放在了主干后面,如果想放在改进其他地方,也是可以的。直接新增,然后调整通道,配齐即可,如果有不懂的,可以添加博主联系方式,如下


🥇🥇🥇
添加博主联系方式:

友好的读者可以添加博主QQ: 2434798737, 有空可以回答一些答疑和问题

🚀🚀🚀


参考

https://github.com/ultralytics/ultralytics

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1518965.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Exam in MAC [容斥]

题意 思路 正难则反 反过来需要考虑的是: (1) 所有满条件一的(x,y)有多少对: x 0 时,有c1对 x 1 时,有c对 ...... x c 时,有1对 以此类推 一共有 (c2)(c1)/2 对 (2) 符合 x y ∈ S的有多少对&#xff1a…

深度学习每周学习总结P1(pytorch手写数字识别)

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 | 接辅导、项目定制 目录 0. 总结1. 数据导入部分2. 模型构建部分3. 训练前的准备4. 定义训练函数5. 定义测试函数6. 训练过程 0. 总结 总结: 数据导入部分&a…

Jmeter进行http接口测试

🍅 视频学习:文末有免费的配套视频可观看 🍅 关注公众号【互联网杂货铺】,回复 1 ,免费获取软件测试全套资料,资料在手,涨薪更快 本文主要针对http接口进行测试,使用 jmeter工具实现…

Jenkins自定义镜像推送到Harbor仓库

之前Jenkins需要推送jar包到远程到目标服务器再进行构建 现在Jenkins容器内部可以直接使用Docker了 直接在Jenkins构建好推送到Harbor仓库上,然后不管是哪台目标服务器,只需要去Harbor仓库拉取镜像即可。 修改Jenkins任务 将代码检测下面的远程服务器步…

UI 学习 三 可访问性 UX

设计、交流和实现不同领域内容的易访问性决策,涉及到一系列考虑因素,以达到更容易访问的产品体验。 Material使用的框架借鉴了WCAG标准和行业最佳实践,以帮助任何人预测、计划、记录和实现可访问体验。 下面描述的三个阶段有助于将可视化UI…

SIMATIC C7-635西门子触摸屏维修6ES7635-2EB02-0AE3

西门子工控机触摸屏维修C7-626/P西门子控制面板维修DP Panel 6ES7626-1DG03-0AE3;6ES7626-2DG04-0AE3 SIMATIC HMI移动面板维修(西门子面板)可轻松进行电源管理与操作,成为移动应用的可能之选。该面板支持线缆或 Wi-Fi 通信&…

Weblogic 常规渗透测试环境

测试环境 本环境模拟了一个真实的weblogic环境,其后台存在一个弱口令,并且前台存在任意文件读取漏洞。分别通过这两种漏洞,模拟对weblogic场景的渗透。 Weblogic版本:10.3.6(11g) Java版本:1.6 弱口令 环境启动后…

数字孪生与智慧城市:实现城市治理现代化的新路径

随着信息技术的迅猛发展,智慧城市已成为城市发展的必然趋势。数字孪生技术作为智慧城市建设的重要支撑,以其独特的优势为城市治理现代化提供了新的路径。本文将探讨数字孪生技术在智慧城市中的应用,以及如何实现城市治理的现代化。 一、数字…

OJ_还是畅通工程

题干 #include <iostream> #include <vector> #include <algorithm> using namespace std;//并查集的应用&#xff1a;判断图的连通性int set[10001]; //i下标是集合数据编号,set[i]是i的父亲的编号 //若i是根&#xff0c;可令set[i] i void InitDisjointSe…

Docker容器化技术(使用Dockerfile制作Nginx镜像)

编写Dockerfile制作Web应用系统nginx镜像&#xff0c;生成镜像名为nginx:v1.1&#xff0c;并推送其到私有仓库。 1、基于centos7基础镜像&#xff1b; 2、指定作者为Chinaskill&#xff1b; 3、安装nginx服务&#xff0c;将提供的dest目录传到镜像内&#xff0c;并将de…

案例分析篇00-【历年案例分析真题考点汇总】与【专栏文章案例分析高频考点目录】(2024年软考高级系统架构设计师冲刺知识点总结-案例分析篇-先导篇)

专栏系列文章&#xff1a; 2024高级系统架构设计师备考资料&#xff08;高频考点&真题&经验&#xff09;https://blog.csdn.net/seeker1994/category_12593400.html 案例分析篇01&#xff1a;软件架构设计考点架构风格及质量属性 案例分析篇11&#xff1a;UML设计考…

YOLO学习

至少不比原来差 网格大小&#xff1a;13、26、52 不同感受野匹配 损失函数是对数 二分类

通过路由器监控,优化网络效率

路由器是网络的基本连接组件&#xff0c;路由器监控涉及将路由器网络作为一个整体进行管理&#xff0c;其中持续监控路由器的性能、运行状况、安全性和可用性&#xff0c;以确保更好的操作和最短的停机时间&#xff0c;因此监控路由器至关重要。 为什么路由器监控对组织很重要…

面试相关问题准备

一.MySql篇 1优化相关问题 1.1MySql中如何定位慢查询&#xff1f; 慢查询的概念&#xff1a;在MySQL中&#xff0c;慢查询是指执行时间超过一定阈值的SQL语句。这个阈值是由long_query_time参数设定的&#xff0c;它的默认值是10秒1。也就是说&#xff0c;如果一条SQL语句的执…

物联网技术在农药化肥行业的远程监控解决方案

物联网技术在农药化肥行业的远程监控解决方案 随着物联网技术的日益成熟&#xff0c;其在农药化肥行业的应用呈现出广阔的前景。通过物联网远程监控解决方案&#xff0c;可以实现生产、存储和施用环节的全程智能化管理&#xff0c;大大提高行业效率和环保水平。 通过物联网云…

CleanMyMac X2024永久免费的强大的Mac清理工具

作为产品功能介绍专员&#xff0c;很高兴向您详细介绍CleanMyMac X这款强大的Mac清理工具。CleanMyMac X具有广泛的清理能力&#xff0c;支持多种文件类型的清理&#xff0c;让您的Mac始终保持最佳状态。 系统垃圾 CleanMyMac X能够深入系统内部&#xff0c;智能识别并清理各种…

软件设计师:12 - 下午题历年真题

章节章节01-计算机组成原理与体系结构07 - 法律法规与标准化与多媒体基础02 - 操作系统基本原理08 - 设计模式03 - 数据库系统09 - 软件工程04 - 计算机网络10 - 面向对象05 - 数据结构与算法11 - 结构化开发与UML06 - 程序设计语言与语言处理程序基础12 - 下午题历年真题End -…

Java_12 杨辉三角 II

杨辉三角 II 给定一个非负索引 rowIndex&#xff0c;返回「杨辉三角」的第 rowIndex 行。 在「杨辉三角」中&#xff0c;每个数是它左上方和右上方的数的和。 示例 1: 输入: rowIndex 3 输出: [1,3,3,1] 示例 2: 输入: rowIndex 0 输出: [1] 示例 3: 输入: rowIndex 1 输…

llama2 代码实验记录

torchrun分布式启动&#xff0c;所以要想在云端的环境下在本地的IDE上debug&#xff0c;需要设置一下&#xff0c;具体可以参考这里&#xff0c;需要传入的路径参数全部使用绝对路径。 目录 1、传入的句子 2、tokenizer 的tokenization 3、model的主要组成部分 4、过程中自…

如何关闭 Visual Studio 双击异常高亮

[问题描述]&#xff1a; 最近 Visual Studio 更新后&#xff0c;双击选中关键字快要亮瞎我的眼睛了 &#x1f440;&#x1f440; [解决方法]&#xff1a; 摸索了一下&#xff0c;找到了关闭的方法&#xff1a;工具 → 选项 → 文本编辑器 → 常规&#xff0c;然后取消 勾选 sel…