1.小美的平衡矩阵
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int[][] nums = new int[n][n], sum = new int[n][n];
char[] chars;
for (int i = 0; i < n; i++) {
chars = scanner.next().toCharArray();
for (int j = 0; j < n; j++) {
nums[i][j] = chars[j] - '0';
if ( i != 0 &&
j != 0)sum[i][j] = sum[i][j - 1] + sum[i - 1][j] - sum[i - 1][j - 1] +
nums[i][j];
else if (i != 0)sum[i][j] = sum[i - 1][j] + nums[i][j];
else if (j != 0)sum[i][j] = sum[i][j - 1] + nums[i][j];
else sum[i][j] = nums[i][j];
}
}
int res = 0;
int tar = 0;
for(int i = 0;i<n;i++){
if(i%2==0) System.out.println(0);
else{
for (int j = i; j < n; j++) {
for (int w = i; w < n; w++) {
if (j == i && w == i)tar = sum[j][w];
else if (j == i)tar = sum[j][w] - sum[j][w - i - 1];
else if (w == i)tar = sum[j][w] - sum[j - i - 1][w];
else tar = sum[j][w] - sum[j][w - i - 1] - sum[j - i - 1][w] + sum[j - i - 1][w
- i - 1];
if (tar == (i + 1) * (i + 1) / 2)res++;
}
}
System.out.println(res);
res = 0;
}
}
}
}
2. 小美的数组询问
import java.util.Scanner;
import java.io.*;
public class Main {
public static void main(String[] args) throws IOException {
StreamTokenizer in=new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
in.nextToken();int n=(int)in.nval;
in.nextToken();int q=(int)in.nval;
int[] arr = new int [n];
long sum = 0l;
long a = 0;
for (int i = 0; i < n; i++) {
in.nextToken();
arr[i] = (int)in.nval;
if(arr[i]==0) a++;
sum += (long)arr[i];
}
for (int i = 0; i < q; i++) {
in.nextToken();
int left = (int)in.nval;
in.nextToken();
int right = (int)in.nval;
System.out.print(sum+a*left);
System.out.print(" ");
System.out.println(sum+a*right);
}
}
}
3.小美的 MT
import java.util.Scanner;
import java.io.*;
public class Main {
public static void main(String[] args) throws IOException {
// StreamTokenizer in=new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
// in.nextToken();int n=(int)in.nval;
// in.nextToken();int q=(int)in.nval;
StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
in.nextToken();int n = (int) in.nval;
in.nextToken();int k = (int) in.nval;
in.nextToken();String string = in.sval;
int sum = 0;
for(int i = 0;i<string.length();i++){
if(string.charAt(i)=='M'||string.charAt(i)=='T'){
sum++;
}
}
System.out.println(sum+k>=n?n:sum+k);
}
}
import java.util.Scanner;
public class Main {
static final int maxn = 100010;
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int q = scanner.nextInt();
int[] a = new int[maxn];
long cnt = 0;
long sum = 0;
for (int i = 1; i <= n; ++i) {
a[i] = scanner.nextInt();
if (a[i] == 0) {
cnt++;
} else {
sum += a[i];
}
}
while (q-- > 0) {
int l = scanner.nextInt();
int r = scanner.nextInt();
System.out.println((sum + l * cnt) + " " + (sum + r * cnt));
}
}
}
4.小美的朋友关系
关键词:并查集、逆序、栈、类、方法重写、集合
这题考到我的智商盲点的,我们需要维护一个并查集来记录朋友关系,这题难点就在于后期会存在遗忘的情况,但是并查集只有合并操作,没有删除操作,由于进行了路径压缩,因此删除的时候难以确定应该修改哪些节点。但是我们可以逆向操作,我们可以逆向遍历查询,遇到删除操作如果是逆序的话则是合并操作,这样就能用并查集进行处理了。确定了大方向后,我们首先读入初始化的边存入数组和集合中,然后存储后期的查询,然后对应后期遗忘的边存入集合方便后续判断。然后才开始初始化关系,注意后期要删除的边不要初始化。然后在存储查询的时候要注意,遗忘中可能包括不是初始化时的操作,是间接关系,是不需要执行并操作的,然后也会出现重复的遗忘,我们要执行加边的是第一次出现的遗忘,因此需要将重复的遗忘从查询中删除。然后要注意重写类的equals方法,传入的参数需要与父类一致,都是Object类,然后hashcode也需要重写,否则集合会判断两者不一样。
import java.util.*;
public class Main {
static Map<Integer, Integer> fa = new HashMap<>();
static Set<Pair> fr = new HashSet<>();
static List<Pair> qs = new ArrayList<>();
static List<String> ans = new ArrayList<>();
static class Pair {
int first;
int second;
int third;
Pair(int first, int second) {
this.first = first;
this.second = second;
}
Pair(int first, int second, int third) {
this.first = first;
this.second = second;
this.third = third;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Pair pair = (Pair) o;
return first == pair.first && second == pair.second && third == pair.third;
}
@Override
public int hashCode() {
return Objects.hash(first, second, third);
}
}
static int find(int x) {
if (!fa.containsKey(x)) return x;
fa.put(x, find(fa.get(x)));
return fa.get(x);
}
static void merge(int x, int y) {
x = find(x);
y = find(y);
if (x != y) {
fa.put(x, y);
}
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int m = scanner.nextInt();
int q = scanner.nextInt();
for (int i = 0; i < m; i++) {
int u = scanner.nextInt();
int v = scanner.nextInt();
fr.add(new Pair(u, v));
}
for (int i = 0; i < q; i++) {
int op = scanner.nextInt();
int u = scanner.nextInt();
int v = scanner.nextInt();
if (op == 1) {
fr.remove(new Pair(u, v));
}
qs.add(new Pair(op, u, v));
}
Collections.reverse(qs);
for (Pair pair : fr) {
merge(pair.first, pair.second);
}
for (Pair pair : qs) {
if (pair.first == 1) {
merge(pair.second, pair.third);
} else {
ans.add(find(pair.second) == find(pair.third) ? "Yes" : "No");
}
}
Collections.reverse(ans);
for (String s : ans) {
System.out.println(s);
}
}
}
5.小美的区间删除
小美拿到了一个大小为n的数组,她希望删除一个区间后,使得剩余所有元素的乘积末尾至少有k个 0。小美想知道,一共有多少种不同的删除方案?
关键词:数学、前缀和、滑动窗口
这题我只想到了使用前缀和来解决,因此会遇到乘法太大导致溢出的问题,当时还打算使用BigDecimal来解决,原来是自己想的简单了。这题除了前缀和,还考了数学问题,实际上能够得到10的倍数只与2和5的个数相关,其他因子对这个不产生影响。因此我们只需对数组中每个数进行分解,看里面包含多少个2和5,然后用前缀和的方式记录。然后就使用滑动窗口来寻找可以删除的区间。判断条件是这个剩下的区间的2和5的最小值与k进行比较,因为一个2和一个5相乘就是10,那么2和5的最小值就是末尾为零的个数。
import java.util.*;
public class MaxCase {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int k = in.nextInt();
long[] pre2 = new long[n+1];
long[] pre5 = new long[n+1];
int cnt2,cnt5,temp;
for(int i=0;i<n;i++){
temp = in.nextInt();
cnt2=0;
cnt5=0;
for(int x=temp;x%2==0;x/=2) cnt2++;
for(int x=temp;x%5==0;x/=5) cnt5++;
pre2[i+1] = pre2[i] + cnt2;
pre5[i+1] = pre5[i] + cnt5;
}
long res = 0;
for(int i=0,j=0;i<n;i++){
while(j<n){
long remain2 = pre2[n] - pre2[j+1] + pre2[i];
long remain5 = pre5[n] - pre5[j+1] + pre5[i];
if(Math.min(remain2,remain5)<k) break;
j++;
}
res += Math.max(j-i, 0);
}
System.out.println(res);
}
}