(黑马出品_高级篇_01)SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式

news2024/11/19 7:48:55

(黑马出品_高级篇_01)SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式

    • = = = = = = = = = = = = = = = 微服务技术——保护 = = = = = = = = = = = = = = =
    • 今日目标
    • 1.初识Sentinel
      • 1.1.雪崩问题及解决方案
      • 1.2.服务保护技术对比
      • 1.3.Sentinel介绍和安装
        • 1.3.1.初识Sentinel
        • 1.3.2.安装Sentinel
      • 1.4.微服务整合Sentinel
    • 2.流量控制
      • 2.1.簇点链路
      • 2.1.快速入门
      • 2.2.流控模式
        • 2.2.1.关联模式
        • 2.2.2.链路模式
        • 2.2.3.总结
      • 2.3.流控效果
        • 2.3.1.warm up
          • 1)配置流控规则:
          • 2)Jmeter测试
        • 2.3.2.排队等待
          • 1)添加流控规则
          • 2)Jmeter测试
        • 2.3.3.总结
      • 2.4.热点参数限流
        • 2.4.1.全局参数限流
        • 2.4.2.热点参数限流
        • 2.4.4.案例
          • 1)标记资源
          • 2)热点参数限流规则
          • 3)Jmeter测试
    • 3.隔离和降级
      • 3.1.FeignClient整合Sentinel
        • 3.1.1.修改配置,开启sentinel功能
        • 3.1.2.编写失败降级逻辑
        • 3.1.3.总结
      • 3.2.线程隔离(舱壁模式)
        • 3.2.1.线程隔离的实现方式
        • 3.2.2.sentinel的线程隔离
          • 1)配置隔离规则
          • 2)Jmeter测试
        • 3.2.3.总结
      • 3.3.熔断降级
        • 3.3.1.慢调用
          • 1)设置慢调用
          • 2)设置熔断规则
          • 3)测试
        • 3.3.2.异常比例、异常数
          • 1)设置异常请求
          • 2)设置熔断规则
          • 3)测试
    • 4.授权规则
      • 4.1.授权规则
        • 4.1.1.基本规则
        • 4.1.2.如何获取origin
        • 4.1.3.给网关添加请求头
        • 4.1.4.配置授权规则
      • 4.2.自定义异常结果
        • 4.2.1.异常类型
        • 4.2.2.自定义异常处理
    • 5.规则持久化
      • 5.1.规则管理模式
        • 5.1.1.pull模式
        • 5.1.2.push模式
      • 5.2.实现push模式
        • 5.2.1 Sentinel 规则持久化
          • 一、修改order-service服务
            • 1.引入依赖
            • 2.配置nacos地址
          • 二、修改sentinel-dashboard源码
            • 1\. 解压
            • 2\. 修改nacos依赖
            • 3\. 添加nacos支持
            • 4\. 修改nacos地址
            • 5\. 配置nacos数据源
            • 6\. 修改前端页面
            • 7\. 重新编译、打包项目
            • 8.启动

在这里插入图片描述
在这里插入图片描述

[此文档是在心向阳光的天域的博客加了一些有助于自己的知识体系,也欢迎大家关注这个大佬的博客](https://blog.csdn.net/sinat_38316216/category_12263516.html)
[是这个视频](https://www.bilibili.com/video/BV1LQ4y127n4/?p=5&spm_id_from=pageDriver&vd_source=9beb0a2f0cec6f01c2433a881b54152c)

= = = = = = = = = = = = = = = 微服务技术——保护 = = = = = = = = = = = = = = =

今日目标

在这里插入图片描述

在这里插入图片描述

1.初识Sentinel

1.1.雪崩问题及解决方案

微服务中,服务间调用关系错综复杂,一个微服务往往依赖于多个其它微服务。
在这里插入图片描述

如图,如果服务提供者I发生了故障,当前的应用的部分业务因为依赖于服务I,因此也会被阻塞。此时,其它不依赖于服务I的业务似乎不受影响。

在这里插入图片描述

但是,依赖服务I的业务请求被阻塞,用户不会得到响应,则tomcat的这个线程不会释放,于是越来越多的用户请求到来,越来越多的线程会阻塞:

在这里插入图片描述

服务器支持的线程和并发数有限,请求一直阻塞,会导致服务器资源耗尽,从而导致所有其它服务都不可用,那么当前服务也就不可用了。

那么,依赖于当前服务的其它服务随着时间的推移,最终也都会变的不可用,形成级联失败,雪崩就发生了:

雪崩:微服务调用链路中的某个服务故障,引起整个链路中的所有微服务都不可用,这就是雪崩

在这里插入图片描述

解决雪崩问题的常见方式有四种:

  • 方案1:超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待
    在这里插入图片描述

仓壁模式

  • 方案2:仓壁模式

仓壁模式来源于船舱的设计:
在这里插入图片描述

船舱都会被隔板分离为多个独立空间,当船体破损时,只会导致部分空间进入,将故障控制在一定范围内,避免整个船体都被淹没。

于此类似,我们可以限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离。
在这里插入图片描述

断路器

  • 方案3:断路器模式:由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求。

断路器会统计访问某个服务的请求数量,异常比例:

在这里插入图片描述

当发现访问服务D的请求异常比例过高时,认为服务D有导致雪崩的风险,会拦截访问服务D的一切请求,形成熔断:
在这里插入图片描述

限流

  • 方案4:流量控制:限制业务访问的QPS,避免服务因流量的突增而故障。

在这里插入图片描述

什么是雪崩问题?

  • 微服务之间相互调用,因为调用链中的一个服务故障,引起整个链路都无法访问的情况。

可以认为:

限流是对服务的保护,避免因瞬间高并发流量而导致服务故障,进而避免雪崩。是一种预防措施。

超时处理、线程隔离、降级熔断是在部分服务故障时,将故障控制在一定范围,避免雪崩。是一种补救措施。

在这里插入图片描述

1.2.服务保护技术对比

在SpringCloud当中支持多种服务保护技术:

  • Netfix Hystrix
  • Sentinel
  • Resilience4J

早期比较流行的是Hystrix框架,但目前国内实用最广泛的还是阿里巴巴的Sentinel框架,这里我们做下对比:

SentinelHystrix
隔离策略信号量隔离线程池隔离/信号量隔离
熔断降级策略基于慢调用比例或异常比例基于失败比率
实时指标实现滑动窗口滑动窗口(基于 RxJava)
规则配置支持多种数据源支持多种数据源
扩展性多个扩展点插件的形式
基于注解的支持支持支持
限流基于 QPS,支持基于调用关系的限流有限的支持
流量整形支持慢启动、匀速排队模式不支持
系统自适应保护支持不支持
控制台开箱即用,可配置规则、查看秒级监控、机器发现等不完善
常见框架的适配Servlet、Spring Cloud、Dubbo、gRPC 等Servlet、Spring Cloud Netflix

在这里插入图片描述

1.3.Sentinel介绍和安装

1.3.1.初识Sentinel

Sentinel是阿里巴巴开源的一款微服务流量控制组件。官网地址:Sentinel官网

Sentinel 具有以下特征:

丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。

完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。

广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。

完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。

1.3.2.安装Sentinel

1)下载

sentinel官方提供了UI控制台,方便我们对系统做限流设置。大家可以在GitHub下载。

课前资料也提供了下载好的jar包:
在这里插入图片描述

2)运行

将jar包放到任意非中文目录
在这里插入图片描述

执行命令:

java -jar sentinel-dashboard-1.8.1.jar

在这里插入图片描述

如果要修改Sentinel的默认端口、账户、密码,可以通过下列配置:

配置项默认值说明
server.port8080服务端口
sentinel.dashboard.auth.usernamesentinel默认用户名
sentinel.dashboard.auth.passwordsentinel默认密码

例如,修改端口:
java -D跟上,以上三个请求即可
这里建议换一个端口

java -Dserver.port=8099 -jar sentinel-dashboard-1.8.1.jar

3)访问

访问http://localhost:8099页面,就可以看到sentinel的控制台了:
在这里插入图片描述

需要输入账号和密码,默认都是:sentinel

登录后,发现一片空白,什么都没有:
在这里插入图片描述
这是因为我们还没有与微服务整合。

1.4.微服务整合Sentinel

在这里插入图片描述
启动Nacos

./startup.cmd -m standalone

启动后的效果图如下:
在这里插入图片描述
在浏览器输入地址即可:

http://127.0.0.1:8848/nacos

在这里插入图片描述
默认的账号和密码都是nacos,进入即可。

注意所有配置文件application.yml 中要从集群设置更改为本地配置
在这里插入图片描述
启动服务
在这里插入图片描述
启动成功后,访问一下网关、Order和User,发现都无误即可

http://localhost:8081/user/1
http://localhost:8080/order/101
http://localhost:10010/user/1?authorization=admin
http://localhost:10010/order/101?authorization=admin

我们在order-service中整合sentinel,并连接sentinel的控制台,步骤如下:

1)引入sentinel依赖

<!--sentinel-->
<dependency>
    <groupId>com.alibaba.cloud</groupId> 
    <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>

2)配置控制台

修改application.yaml文件,添加下面内容:

server:
  port: 8080
spring:
  cloud: 
    sentinel:
      transport:
        dashboard: localhost:8099

在这里插入图片描述
配置好后重启order-service

3)访问order-service的任意端点
打开浏览器,访问http://localhost:8080/order/101,这样才能触发sentinel的监控。
然后再访问sentinel的控制台,查看效果:
在这里插入图片描述

2.流量控制

雪崩问题虽然有四种方案,但是限流是避免服务因突发的流量而发生故障,是对微服务雪崩问题的预防。我们先学习这种模式。

2.1.簇点链路

当请求进入微服务时,首先会访问DispatcherServlet,然后进入Controller、Service、Mapper,这样的一个调用链就叫做簇点链路。簇点链路中被监控的每一个接口就是一个资源

默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint,也就是controller中的方法),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。

例如,我们刚才访问的order-service中的OrderController中的端点:/order/{orderId}
在这里插入图片描述
流控、熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:

  • 流控:流量控制
  • 降级:降级熔断
  • 热点:热点参数限流,是限流的一种
  • 授权:请求的权限控制

2.1.快速入门

示例

点击资源/order/{orderId}后面的流控按钮,就可以弹出表单。
在这里插入图片描述
表单中可以填写限流规则,如下:
在这里插入图片描述
其含义是限制 /order/{orderId}这个资源的单机QPS为1,即每秒只允许1次请求,超出的请求会被拦截并报错。

练习:

需求:给 /order/{orderId}这个资源设置流控规则,QPS不能超过 5,然后测试。

1)首先在sentinel控制台添加限流规则
在这里插入图片描述
2)利用jmeter测试
如果没有用过jmeter,可以参考课前资料提供的文档《Jmeter快速入门.md》
打开JMeter
在这里插入图片描述

课前资料提供了编写好的Jmeter测试样例:
在这里插入图片描述
打开jmeter,导入课前资料提供的测试样例:
在这里插入图片描述
选择:
在这里插入图片描述
20个用户,2秒内运行完,QPS是10,超过了5.
选中流控入门,QPS<5右键运行:
在这里插入图片描述

注意,不要点击菜单中的执行按钮来运行。

这里更改端口为order-service的端口8080
在这里插入图片描述

结果:
在这里插入图片描述
可以看到,成功的请求每次只有5个
查看失败原因:
在这里插入图片描述
然后再去sentinel中查看调用情况
在这里插入图片描述

2.2.流控模式

在添加限流规则时,点击高级选项,可以选择三种流控模式

  • 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式
  • 关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
  • 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流

在这里插入图片描述

快速入门测试的就是直接模式。

2.2.1.关联模式

关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
配置规则
在这里插入图片描述
语法说明:当/write资源访问量触发阈值时,就会对/read资源限流,避免影响/write资源。

使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是优先支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流。

需求说明

  • 在OrderController新建两个端点:/order/query和/order/update,无需实现业务

  • 配置流控规则,当/order/ update资源被访问的QPS超过5时,对/order/query请求限流

1)定义/order/query端点,模拟订单查询

@GetMapping("/query")
public String queryOrder() {
    return "查询订单成功";
}

2)定义/order/update端点,模拟订单更新

@GetMapping("/update")
public String updateOrder() {
    return "更新订单成功";
}

重启服务访问一下新添加的地址

http://localhost:8080/order/query
http://localhost:8080/order/update

查看sentinel控制台的簇点链路:
在这里插入图片描述

3)配置流控规则

==对哪个端点限流,就点击哪个端点后面的按钮。==我们是对订单查询/order/query限流,因此点击它后面的按钮:
在这里插入图片描述
在表单中填写流控规则:
在这里插入图片描述

4)在Jmeter测试

选择《流控模式-关联》:同理,端口号更改为8080
在这里插入图片描述
可以看到1000个用户,100秒,因此QPS为10,超过了我们设定的阈值:5

查看http请求:
在这里插入图片描述
请求的目标是/order/update,这样这个断点就会触发阈值。

但限流的目标是/order/query,我们在浏览器访问,可以发现:
在这里插入图片描述
确实被限流了。

5)总结
在这里插入图片描述

2.2.2.链路模式

链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。
配置示例

例如有两条请求链路:

  • /test1 --> /common
  • /test2 --> /common

如果只希望统计从/test2进入到/common的请求,则可以这样配置:
在这里插入图片描述
实战案例

需求:有查询订单和创建订单业务,两者都需要查询商品。针对从查询订单进入到查询商品的请求统计,并设置限流。

步骤:

  1. 在OrderService中添加一个queryGoods方法,不用实现业务
  2. 在OrderController中,改造/order/query端点,调用OrderService中的queryGoods方法
  3. 在OrderController中添加一个/order/save的端点,调用OrderService的queryGoods方法
  4. 给queryGoods设置限流规则,从/order/query进入queryGoods的方法限制QPS必须小于2

实现:

1)添加查询商品方法

在order-service服务中,给OrderService类添加一个queryGoods方法:

public void queryGoods(){
    System.err.println("查询商品");
}

2)查询订单时,查询商品

在order-service的OrderController中,修改/order/query端点的业务逻辑:

@GetMapping("/query")
public String queryOrder() {
    // 查询商品
    orderService.queryGoods();
    // 查询订单
    System.out.println("查询订单");
    return "查询订单成功";
}

3)新增订单,查询商品

在order-service的OrderController中,修改/order/save端点,模拟新增订单:

@GetMapping("/save")
public String saveOrder() {
    // 查询商品
    orderService.queryGoods();
    // 查询订单
    System.err.println("新增订单");
    return "新增订单成功";
}

4)给查询商品添加资源标记

默认情况下,OrderService中的方法是不被Sentinel监控的,需要我们自己通过注解来标记要监控的方法。
给OrderService的queryGoods方法添加**@SentinelResource**注解:

@SentinelResource("goods")
public void queryGoods(){
    System.err.println("查询商品");
}

链路模式中,是对不同来源的两个链路做监控。但是sentinel默认会给进入SpringMVC的所有请求设置同一个root资源,会导致链路模式失效。

我们需要关闭这种对SpringMVC的资源聚合,修改order-service服务的application.yml文件:

spring:
  cloud:
    sentinel:
      web-context-unify: false # 关闭context整合

重启服务,访问/order/query和/order/save,
在这里插入图片描述

可以查看到sentinel的簇点链路规则中,出现了新的资源:
在这里插入图片描述

5)添加流控规则

点击goods资源后面的流控按钮,在弹出的表单中填写下面信息:
在这里插入图片描述
只统计从/order/query进入/goods的资源,QPS阈值为2,超出则被限流。

6)Jmeter测试

选择《流控模式-链路》:
在这里插入图片描述
可以看到这里200个用户,50秒内发完,QPS为4,超过了我们设定的阈值2
一个http请求是访问/order/save:
在这里插入图片描述
运行的结果:
在这里插入图片描述
完全不受影响。
另一个是访问/order/query:
在这里插入图片描述
运行结果:
在这里插入图片描述
每次只有2个通过。

2.2.3.总结

流控模式有哪些?

•直接:对当前资源限流

•关联:高优先级资源触发阈值,对低优先级资源限流。

•链路:阈值统计时,只统计从指定资源进入当前资源的请求,是对请求来源的限流

在这里插入图片描述

2.3.流控效果

在流控的高级选项中,还有一个流控效果选项:
在这里插入图片描述
流控效果是指请求达到流控阈值时应该采取的措施,包括三种:

  • 快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。

  • warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。

  • 排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长

2.3.1.warm up

阈值一般是一个微服务能承担的最大QPS,但是一个服务刚刚启动时,一切资源尚未初始化(冷启动),如果直接将QPS跑到最大值,可能导致服务瞬间宕机。

warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 maxThreshold / coldFactor,持续指定时长后,逐渐提高到maxThreshold值。而coldFactor的默认值是3.

例如,我设置QPS的maxThreshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10.
在这里插入图片描述
案例
先访问

http://localhost:8080/order/101

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用warm up效果,预热时长为5秒

1)配置流控规则:

在这里插入图片描述

2)Jmeter测试

选择《流控效果,warm up》:
在这里插入图片描述

QPS为10.

刚刚启动时,大部分请求失败,成功的只有3个,说明QPS被限定在3:
在这里插入图片描述
随着时间推移,成功比例越来越高:
在这里插入图片描述
到Sentinel控制台查看实时监控:
在这里插入图片描述
一段时间后:
在这里插入图片描述

2.3.2.排队等待

当请求超过QPS阈值时,快速失败和warm up 会拒绝新的请求并抛出异常。
而排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。

工作原理

例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待时长超过2000ms的请求会被拒绝并抛出异常。

在这里插入图片描述
那什么叫做预期等待时长呢?

比如现在一下子来了12 个请求,因为每200ms执行一个请求,那么:

  • 第6个请求的预期等待时长 = 200 * (6 - 1) = 1000ms
  • 第12个请求的预期等待时长 = 200 * (12-1) = 2200ms

现在,第1秒同时接收到10个请求,但第2秒只有1个请求,此时QPS的曲线这样的:
在这里插入图片描述

如果使用队列模式做流控,所有进入的请求都要排队,以固定的200ms的间隔执行,QPS会变的很平滑:
在这里插入图片描述

平滑的QPS曲线,对于服务器来说是更友好的。

案例

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用排队的流控效果,超时时长设置为5s

1)添加流控规则

在这里插入图片描述

2)Jmeter测试

选择《流控效果,队列》:
在这里插入图片描述
QPS为15,已经超过了我们设定的10。

如果是之前的 快速失败、warmup模式,超出的请求应该会直接报错。

但是我们看看队列模式的运行结果:
在这里插入图片描述
全部都通过了。

再去sentinel查看实时监控的QPS曲线:
在这里插入图片描述

QPS非常平滑,一致保持在10,但是超出的请求没有被拒绝,而是放入队列。因此响应时间(等待时间)会越来越长。
当队列满了以后,才会有部分请求失败:
在这里插入图片描述

2.3.3.总结

流控效果有哪些?

  • 快速失败:QPS超过阈值时,拒绝新的请求
  • warm up: QPS超过阈值时,拒绝新的请求;QPS阈值是逐渐提升的,可以避免冷启动时高并发导致服务宕机。
  • 排队等待:请求会进入队列,按照阈值允许的时间间隔依次执行请求;如果请求预期等待时长大于超时时间,直接拒绝

在这里插入图片描述

2.4.热点参数限流

之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是分别统计参数值相同的请求,判断是否超过QPS阈值。

2.4.1.全局参数限流

例如,一个根据id查询商品的接口:
在这里插入图片描述
访问/goods/{id}的请求中,id参数值会有变化,热点参数限流会根据参数值分别统计QPS,统计结果:
在这里插入图片描述
当id=1的请求触发阈值被限流时,id值不为1的请求不受影响。

配置示例:
在这里插入图片描述
代表的含义是:对hot这个资源的0号参数(第一个参数)做统计,每1秒相同参数值的请求数不能超过5

2.4.2.热点参数限流

刚才的配置中,对查询商品这个接口的所有商品一视同仁,QPS都限定为5.

而在实际开发中,可能部分商品是热点商品,例如秒杀商品,我们希望这部分商品的QPS限制与其它商品不一样,高一些。那就需要配置热点参数限流的高级选项了:
在这里插入图片描述
结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的QPS不能超过5,有两个例外:

•如果参数值是100,则每1秒允许的QPS为10
•如果参数值是101,则每1秒允许的QPS为15

2.4.4.案例

案例需求:给/order/{orderId}这个资源添加热点参数限流,规则如下:

  • 默认的热点参数规则是每1秒请求量不超过2
  • 给102这个参数设置例外:每1秒请求量不超过4
  • 给103这个参数设置例外:每1秒请求量不超过10

注意事项:热点参数限流对默认的SpringMVC资源无效,需要利用@SentinelResource注解标记资源

1)标记资源

给order-service中的OrderController中的/order/{orderId}资源添加注解:
在这里插入图片描述
修改完之后,记得重启一下order-service服务

2)热点参数限流规则

访问该接口,可以看到我们标记的hot资源出现了:
在这里插入图片描述
这里不要点击hot后面的按钮,页面有BUG

点击左侧菜单中热点规则菜单:
在这里插入图片描述
点击新增,填写表单:
在这里插入图片描述

3)Jmeter测试

选择《热点参数限流 QPS1》:
在这里插入图片描述
这里发起请求的QPS为5.

包含3个http请求:

普通参数,QPS阈值为2
在这里插入图片描述
运行结果:
在这里插入图片描述
例外项,QPS阈值为4
在这里插入图片描述

运行结果:
在这里插入图片描述

例外项,QPS阈值为10
在这里插入图片描述

运行结果:
在这里插入图片描述
在这里插入图片描述

3.隔离和降级

限流是一种预防措施,虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。

而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了。

线程隔离之前讲到过:调用者在调用服务提供者时,给每个调用的请求分配独立线程池,出现故障时,最多消耗这个线程池内资源,避免把调用者的所有资源耗尽。
在这里插入图片描述

熔断降级是在调用方这边加入断路器,统计对服务提供者的调用,如果调用的失败比例过高,则熔断该业务,不允许访问该服务的提供者了。
在这里插入图片描述

可以看到,不管是线程隔离还是熔断降级,都是对客户端(调用方)的保护。需要在调用方 发起远程调用时做线程隔离、或者服务熔断。

而我们的微服务远程调用都是基于Feign来完成的,因此我们需要将Feign与Sentinel整合,在Feign里面实现线程隔离和服务熔断。

3.1.FeignClient整合Sentinel

SpringCloud中,微服务调用都是通过Feign来实现的,因此做客户端保护必须整合Feign和Sentinel。

3.1.1.修改配置,开启sentinel功能

修改OrderService的application.yml文件,开启Feign的Sentinel功能:

feign:
  sentinel:
    enabled: true # 开启feign对sentinel的支持

在这里插入图片描述

3.1.2.编写失败降级逻辑

业务失败后,不能直接报错,而应该返回用户一个友好提示或者默认结果,这个就是失败降级逻辑。

给FeignClient编写失败后的降级逻辑

  • 方式一:FallbackClass,无法对远程调用的异常做处理
  • 方式二:FallbackFactory,可以对远程调用的异常做处理,我们选择这种

这里我们演示方式二的失败降级处理。

步骤一在feing-api项目中定义类,实现FallbackFactory:

在这里插入图片描述
代码:

package cn.itcast.feign.clients.fallback;

import cn.itcast.feign.clients.UserClient;
import cn.itcast.feign.pojo.User;
import feign.hystrix.FallbackFactory;
import lombok.extern.slf4j.Slf4j;

@Slf4j
public class UserClientFallbackFactory implements FallbackFactory<UserClient> {
    @Override
    public UserClient create(Throwable throwable) {
        return new UserClient() {
            @Override
            public User findById(Long id) {
                log.error("查询用户异常", throwable);
                // 根据业务需求返回默认的数据,例如这里返回了空用户
                return new User();
            }
        };
    }
}

步骤二在feing-api项目中的DefaultFeignConfiguration类中将UserClientFallbackFactory注册为一个Bean:

@Bean
public UserClientFallbackFactory userClientFallbackFactory(){
    return new UserClientFallbackFactory();
}

步骤三在feing-api项目中的UserClient接口中使用UserClientFallbackFactory:

import cn.itcast.feign.clients.fallback.UserClientFallbackFactory;
import cn.itcast.feign.pojo.User;
import org.springframework.cloud.openfeign.FeignClient;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;

@FeignClient(value = "userservice", fallbackFactory = UserClientFallbackFactory.class)
public interface UserClient {

    @GetMapping("/user/{id}")
    User findById(@PathVariable("id") Long id);
}

重启服务后,访问一次订单查询业务,然后查看sentinel控制台,可以看到新的簇点链路:
在这里插入图片描述

3.1.3.总结

Sentinel支持的雪崩解决方案:

  • 线程隔离(仓壁模式)
  • 降级熔断

Feign整合Sentinel的步骤:

  • 在application.yml中配置:feign.sentienl.enable=true
  • 给FeignClient编写FallbackFactory并注册为Bean
  • 将FallbackFactory配置到FeignClient

在这里插入图片描述

3.2.线程隔离(舱壁模式)

3.2.1.线程隔离的实现方式

线程隔离有两种方式实现:

  • 线程池隔离

  • 信号量隔离(Sentinel默认采用)

如图:
在这里插入图片描述
线程池隔离:给每个服务调用业务分配一个线程池,利用线程池本身实现隔离效果

信号量隔离:不创建线程池,而是计数器模式,记录业务使用的线程数量,达到信号量上限时,禁止新的请求。

两者的优缺点:
在这里插入图片描述

在这里插入图片描述

3.2.2.sentinel的线程隔离

用法说明

在添加限流规则时,可以选择两种阈值类型:
在这里插入图片描述

  • QPS:就是每秒的请求数,在快速入门中已经演示过

  • 线程数:是该资源能使用用的tomcat线程数的最大值。也就是通过限制线程数量,实现线程隔离(舱壁模式)。

案例需求:给 order-service服务中的UserClient的查询用户接口设置流控规则,线程数不能超过 2。然后利用jemeter测试。

1)配置隔离规则

选择feign接口后面的流控按钮:
在这里插入图片描述

填写表单:
在这里插入图片描述

2)Jmeter测试

选择《阈值类型-线程数<2》:
在这里插入图片描述
一次发生10个请求,有较大概率并发线程数超过2,而超出的请求会走之前定义的失败降级逻辑。

查看运行结果:
在这里插入图片描述

发现虽然结果都是通过了,不过部分请求得到的响应是降级返回的null信息。

3.2.3.总结

线程隔离的两种手段是?

  • 信号量隔离

  • 线程池隔离

信号量隔离的特点是?

  • 基于计数器模式,简单,开销小

线程池隔离的特点是?

  • 基于线程池模式,有额外开销,但隔离控制更强

在这里插入图片描述

3.3.熔断降级

熔断降级是解决雪崩问题的重要手段。其思路是由断路器统计服务调用的异常比例、慢请求比例,如果超出阈值则会熔断该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行访问该服务的请求。

断路器控制熔断和放行是通过状态机来完成的:
在这里插入图片描述
状态机包括三个状态:

  • closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态
  • open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态5秒后会进入half-open状态
  • half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。
    • 请求成功:则切换到closed状态
    • 请求失败:则切换到open状态

断路器熔断策略有三种:慢调用、异常比例、异常数

3.3.1.慢调用

慢调用:业务的响应时长(RT)大于指定时长的请求认定为慢调用请求。在指定时间内,如果请求数量超过设定的最小数量,慢调用比例大于设定的阈值,则触发熔断。

例如:
在这里插入图片描述

解读:RT超过500ms的调用是慢调用,统计最近10000ms内的请求,如果请求量超过10次,并且慢调用比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。

案例
需求:给 UserClient的查询用户接口设置降级规则,慢调用的RT阈值为50ms,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5

1)设置慢调用

修改user-service中的/user/{id}这个接口的业务。通过休眠模拟一个延迟时间:
在这里插入图片描述
此时,orderId=101的订单,关联的是id为1的用户,调用时长为60ms:
在这里插入图片描述
orderId=102的订单,关联的是id为2的用户,调用时长为非常短;
在这里插入图片描述

2)设置熔断规则

先删除之前的流控规则,防止产生影响
在这里插入图片描述
下面,给feign接口设置降级规则:
在这里插入图片描述
规则:
在这里插入图片描述
超过50ms的请求都会被认为是慢请求

3)测试

在浏览器访问:http://localhost:8088/order/101,快速刷新5次,可以发现:
在这里插入图片描述
触发了熔断,请求时长缩短至5ms,快速失败了,并且走降级逻辑,返回的null

在浏览器访问:http://localhost:8088/order/102,竟然也被熔断了:

在这里插入图片描述

3.3.2.异常比例、异常数

异常比例或异常数:统计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常的比例达到设定的比例阈值(或超过指定异常数),则触发熔断。

例如,一个异常比例设置:
在这里插入图片描述

解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于0.4,则触发熔断。

一个异常数设置:
在这里插入图片描述
解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于2次,则触发熔断。

案例

需求:给 UserClient的查询用户接口设置降级规则,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5s

1)设置异常请求

首先,修改user-service中的/user/{id}这个接口的业务。手动抛出异常,以触发异常比例的熔断:
在这里插入图片描述
也就是说,id 为 2时,就会触发异常
我们访问一下

http://localhost:8080/order/102

抛出异常
在这里插入图片描述

2)设置熔断规则

删除之前的熔断规则
在这里插入图片描述

下面,给feign接口设置降级规则:
在这里插入图片描述
规则:
在这里插入图片描述
在5次请求中,只要异常比例超过0.4,也就是有2次以上的异常,就会触发熔断。

3)测试

在浏览器快速访问:http://localhost:8088/order/102,快速刷新5次,触发熔断:
在这里插入图片描述
此时,我们去访问本来应该正常的103:
在这里插入图片描述
总结:
Sentinel熔断降级的策略有哪些?

  • 慢调用比例: 超过指定时长的调用为慢调用,统计单位时长内
    慢调用的比例,超过阈值则熔断
  • 异常比例:统计单位时长内异常调用的比例,超过阈值则熔断
  • 异常数:统计单位时长内异常调用的次数,超过阈值则熔断

在这里插入图片描述

4.授权规则

授权规则可以对请求方来源做判断和控制。

4.1.授权规则

4.1.1.基本规则

授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式。

  • 白名单:来源(origin)在白名单内的调用者允许访问

  • 黑名单:来源(origin)在黑名单内的调用者不允许访问

点击左侧菜单的授权,可以看到授权规则:
在这里插入图片描述

  • 资源名:就是受保护的资源,例如/order/{orderId}

  • 流控应用:是来源者的名单,

    • 如果是勾选白名单,则名单中的来源被许可访问。
    • 如果是勾选黑名单,则名单中的来源被禁止访问。

比如:
在这里插入图片描述

我们允许请求从gateway到order-service,不允许浏览器访问order-service,那么白名单中就要填写网关的来源名称(origin)

4.1.2.如何获取origin

Sentinel是通过RequestOriginParser这个接口的parseOrigin来获取请求的来源的。

public interface RequestOriginParser {
    /**
     * 从请求request对象中获取origin,获取方式自定义
     */
    String parseOrigin(HttpServletRequest request);
}

这个方法的作用就是从request对象中,获取请求者的origin值并返回。

默认情况下,sentinel不管请求者从哪里来,返回值永远是default,也就是说一切请求的来源都被认为是一样的值default。

因此,我们需要自定义这个接口的实现,让不同的请求,返回不同的origin

例如order-service服务中,我们定义一个RequestOriginParser的实现类:

package cn.itcast.order.sentinel;

import com.alibaba.csp.sentinel.adapter.spring.webmvc.callback.RequestOriginParser;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;

import javax.servlet.http.HttpServletRequest;

@Component
public class HeaderOriginParser implements RequestOriginParser {
    @Override
    public String parseOrigin(HttpServletRequest request) {
        // 1.获取请求头
        String origin = request.getHeader("origin");
        // 2.非空判断
        if (StringUtils.isEmpty(origin)) {
            origin = "blank";
        }
        return origin;
    }
}

我们会尝试从request-header中获取origin值。

4.1.3.给网关添加请求头

既然获取请求origin的方式是从reques-header中获取origin值,我们必须让所有从gateway路由到微服务的请求都带上origin头

这个需要利用之前学习的一个GatewayFilter来实现,AddRequestHeaderGatewayFilter。

修改gateway服务中的application.yml,添加一个defaultFilter:

spring:
  cloud:
    gateway:
      default-filters:
        - AddRequestHeader=origin,gateway
      routes:
       # ...略

在这里插入图片描述

这样,从gateway路由的所有请求都会带上origin头,值为gateway。而从其它地方到达微服务的请求则没有这个头。

配置完后我们重启Gateway和OrderService
访问

http://localhost:8080/order/103
4.1.4.配置授权规则

接下来,我们添加一个授权规则,放行origin值为gateway的请求。
在这里插入图片描述
配置如下:
在这里插入图片描述
现在,我们直接跳过网关,访问order-service服务:
通过网关访问:

我们访问

http://localhost:8080/order/102

发现直接报错了
在这里插入图片描述
而我们访问网关

http://localhost:10010/order/101?authorization=admin

发现访问无误
在这里插入图片描述

4.2.自定义异常结果

默认情况下,发生限流、降级、授权拦截时,都会抛出异常到调用方。异常结果都是flow limmiting(限流)。这样不够友好,无法得知是限流还是降级还是授权拦截。

4.2.1.异常类型

而如果要自定义异常时的返回结果,需要实现BlockExceptionHandler接口:

public interface BlockExceptionHandler {
    /**
     * 处理请求被限流、降级、授权拦截时抛出的异常:BlockException
     */
    void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception;
}

这个方法有三个参数:

  • HttpServletRequest request:request对象
  • HttpServletResponse response:response对象
  • BlockException e:被sentinel拦截时抛出的异常

这里的BlockException包含多个不同的子类:

异常说明
FlowException限流异常
ParamFlowException热点参数限流的异常
DegradeException降级异常
AuthorityException授权规则异常
SystemBlockException系统规则异常
4.2.2.自定义异常处理

下面,我们就在order-service定义一个自定义异常处理类:

package cn.itcast.order.sentinel;

import com.alibaba.csp.sentinel.adapter.spring.webmvc.callback.BlockExceptionHandler;
import com.alibaba.csp.sentinel.slots.block.BlockException;
import com.alibaba.csp.sentinel.slots.block.authority.AuthorityException;
import com.alibaba.csp.sentinel.slots.block.degrade.DegradeException;
import com.alibaba.csp.sentinel.slots.block.flow.FlowException;
import com.alibaba.csp.sentinel.slots.block.flow.param.ParamFlowException;
import org.springframework.stereotype.Component;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@Component
public class SentinelExceptionHandler implements BlockExceptionHandler {
    @Override
    public void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {
        String msg = "未知异常";
        int status = 429;

        if (e instanceof FlowException) {
            msg = "请求被限流了";
        } else if (e instanceof ParamFlowException) {
            msg = "请求被热点参数限流";
        } else if (e instanceof DegradeException) {
            msg = "请求被降级了";
        } else if (e instanceof AuthorityException) {
            msg = "没有权限访问";
            status = 401;
        }

        response.setContentType("application/json;charset=utf-8");
        response.setStatus(status);
        response.getWriter().println("{\"msg\": " + msg + ", \"status\": " + status + "}");
    }
}

重启测试,在不同场景下,会返回不同的异常消息.
先添加流控规则,设置QPS = 1
在这里插入图片描述
这里重启一下idea清理缓存
访问

http://localhost:8080/order/103

限流:
在这里插入图片描述

上面规则测试完之后记得删除,然后配置授权规则
在这里插入图片描述

授权拦截时:
再此访问

http://localhost:8080/order/103

在这里插入图片描述

5.规则持久化

现在,sentinel的所有规则都是内存存储,重启后所有规则都会丢失。在生产环境下,我们必须确保这些规则的持久化,避免丢失。

5.1.规则管理模式

规则是否能持久化,取决于规则管理模式,sentinel支持三种规则管理模式:

  • 原始模式:Sentinel的默认模式,将规则保存在内存,重启服务会丢失。
  • pull模式
  • push模式
5.1.1.pull模式

pull模式:控制台将配置的规则推送到Sentinel客户端,而客户端会将配置规则保存在本地文件或数据库中。以后会定时去本地文件或数据库中查询,更新本地规则。
缺点:存在时效性问题,会有数据不一致问题
在这里插入图片描述

5.1.2.push模式

push模式:控制台将配置规则推送到远程配置中心,例如Nacos。Sentinel客户端监听Nacos,获取配置变更的推送消息,完成本地配置更新。

在这里插入图片描述

5.2.实现push模式

详细步骤可以参考课前资料的《sentinel规则持久化》:
在这里插入图片描述

5.2.1 Sentinel 规则持久化
一、修改order-service服务

修改OrderService,让其监听Nacos中的sentinel规则配置。
具体步骤如下:

1.引入依赖

在order-service中引入sentinel监听nacos的依赖:

<dependency>
    <groupId>com.alibaba.csp</groupId>
    <artifactId>sentinel-datasource-nacos</artifactId>
</dependency>
2.配置nacos地址

在order-service中的application.yml文件配置nacos地址及监听的配置信息:

spring:
  cloud:
    sentinel:
      datasource:
        flow:
          nacos:
            server-addr: localhost:8848 # nacos地址
            dataId: orderservice-flow-rules
            groupId: SENTINEL_GROUP
            rule-type: flow # 还可以是:degrade、authority、param-flow

修改完后重启order-service项目

二、修改sentinel-dashboard源码

SentinelDashboard默认不支持nacos的持久化,需要修改源码。

1. 解压

解压课前资料中的sentinel源码包:
在这里插入图片描述
然后并用IDEA打开这个项目,结构如下:
在这里插入图片描述

2. 修改nacos依赖

在sentinel-dashboard源码的pom文件中,nacos的依赖默认的scope是test,只能在测试时使用,这里要去除:
在这里插入图片描述
将sentinel-datasource-nacos依赖的scope去掉:

<dependency>
    <groupId>com.alibaba.csp</groupId>
    <artifactId>sentinel-datasource-nacos</artifactId>
</dependency>
3. 添加nacos支持

在sentinel-dashboard的test包下,已经编写了对nacos的支持,我们需要将其拷贝到main下。
在这里插入图片描述

4. 修改nacos地址

然后,还需要修改测试代码中的NacosConfig类:
在这里插入图片描述

修改其中的nacos地址,让其读取application.properties中的配置:
在这里插入图片描述
在sentinel-dashboard的application.properties中添加nacos地址配置:

nacos.addr=localhost:8848
5. 配置nacos数据源

另外,还需要修改com.alibaba.csp.sentinel.dashboard.controller.v2包下的FlowControllerV2类:
在这里插入图片描述
让我们添加的Nacos数据源生效:
在这里插入图片描述

6. 修改前端页面

接下来,还要修改前端页面,添加一个支持nacos的菜单。

修改src/main/webapp/resources/app/scripts/directives/sidebar/目录下的sidebar.html文件:
在这里插入图片描述

将其中的这部分注释打开:
在这里插入图片描述

修改其中的文本:
在这里插入图片描述

7. 重新编译、打包项目

运行IDEA中的maven插件,编译和打包修改好的Sentinel-Dashboard:
在这里插入图片描述

8.启动

启动方式跟官方一样:

java -jar sentinel-dashboard.jar

如果要修改nacos地址,需要添加参数:
这里我们用项目资料中老师打包好的
在这里插入图片描述
更改order-service的配置文件的端口,因为老师的jar包是8080端口
在这里插入图片描述

之后启动jar包

java -jar -Dnacos.addr=localhost:8848 sentinel-dashboard.jar

打开浏览器访问登录sentinel

http://localhost:8080/#/login

在这里插入图片描述
先访问,加载簇点链路

http://localhost:8088/order/103

刷新sentinel(这里可以重启一下IDEA)
访问

http://localhost:8080/#/dashboard

在这里插入图片描述
清楚后重新登录sentinel,发现多了流控规则
在这里插入图片描述
点击新增流控规则
在这里插入图片描述

资源名

/order/{orderId}

在这里插入图片描述

访问

http://localhost:8848/nacos/

发现多出来了一条配置列表,正是我们的限流规则
在这里插入图片描述
访问2次

http://localhost:8088/order/101

在这里插入图片描述
我们重启IDEA,看一下限流规则消失没
在这里插入图片描述
再2次访问

http://localhost:8088/order/101

发现限流规则没有消失,实现了持久化
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1514627.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Purple Pi OH鸿蒙开发板7天入门OpenHarmony开源鸿蒙教程【六】

今天我们来从OpenHarmony简介、环境搭建、创建第一个OpenHarmony项目等方面开始OpenHarmony应用开发的第一步。 一. OpenHarmony简介 OpenHarmony 是由开放原子开源基金会&#xff08;OpenAtom Foundation&#xff09;孵化及运营的开源项目,目标是面向全场景、全连接、全智能…

今天我们来学习一下关于MySQL数据库

目录 前言: 1.MySQL定义&#xff1a; 1.1基础概念&#xff1a; 1.1.1数据库&#xff08;Database&#xff09;&#xff1a; 1.1.2表&#xff08;Table&#xff09;&#xff1a; 1.1.3记录&#xff08;Record&#xff09;与字段&#xff08;Field&#xff09;&#xff1a; …

jenkins + gitea 自动化部署Docker项目(vue + .NET Core)

废话不多说&#xff0c;服务先安装好Jenkins 和 gitea 理论上 gitlab 一样的实现流程 Jenkins 配置&#xff1a; 第一步装插件 安装 Generic Event 安装 gitea 相关插件 创建一个任务 设置 git 根据自己git 的认证填写对应的认证方式 构建环境记得勾选这个&#xff0c;会清…

pytorch模型转onnx格式,编写符号函数实现torch算子接口和onnx算子的映射,新建简单算子--模型部署记录整理

对于深度学习模型来说&#xff0c;模型部署指让训练好的模型在特定环境中运行的过程。相比于软件部署&#xff0c;模型部署会面临更多的难题&#xff1a; 运行模型所需的环境难以配置。深度学习模型通常是由一些框架编写&#xff0c;比如 PyTorch、TensorFlow。由于框架规模、依…

rt-thread之sal+lwip的tcp客户端示例记录(接收非阻塞)

示例记录 #include "lwip_test.h" #include "lwip/sockets.h" #include "netdev.h"#define DBG_ENABLE #define DBG_TAG "lwip.tst" #define DBG_LVL DBG_LOG#include <rtdbg.h>#define SERVER_PORT 8080 #define SERVER_HOST …

《ElementPlus 与 ElementUI 差异集合》icon 图标使用(包含:el-button,el-input和el-dropdown 差异对比)

安装 注意 ElementPlus 的 Icon 图标 要额外安装插件 element-plus/icons-vue. npm install element-plus/icons-vue注册 全局注册 定义一个文件 element-icon.js &#xff0c;注意代码第 6 行。加上了前缀 ElIcon &#xff0c;避免组件命名重复&#xff0c;且易于理解为 e…

还是了解下吧,大语言模型调研汇总

大语言模型调研汇总 一. Basic Language ModelT5GPT-3LaMDAJurassic-1MT-NLGGopherChinchillaPaLMU-PaLMOPTLLaMABLOOMGLM-130BERNIE 3.0 Titan 二. Instruction-Finetuned Language ModelT0FLANFlan-LMBLOOMZ & mT0GPT-3.5ChatGPTGPT-4AlpacaChatGLMERNIE BotBard 自从Cha…

如何创建Gitflow图表

如何创建Gitflow图表 drawio是一款强大的图表绘制软件&#xff0c;支持在线云端版本以及windows, macOS, linux安装版。 如果想在线直接使用&#xff0c;则直接输入网址drawon.cn或者使用drawon(桌案), drawon.cn内部完整的集成了drawio的所有功能&#xff0c;并实现了云端存储…

【关注】国内外经典大模型(ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、文心一言、千问等

以ChatGPT、LLaMA、Gemini、DALLE、Midjourney、Stable Diffusion、星火大模型、文心一言、千问为代表AI大语言模型带来了新一波人工智能浪潮&#xff0c;可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、论文检索、写作、翻译、润色、文献辅助…

Django官网项目 五

Writing your first Django app, part 5 | Django documentation | Django 自动测试介绍 何为自动测试 测试有系统自动完成。你只需要一次性的编写测试代码&#xff0c;当程序代码变更后&#xff0c;不需要对原来的测试人工再重新测试一遍。系统可以自动运行原来编写的测试代…

使用Thymeleaf-没有js的html模板导出为pdf

html模板 <!DOCTYPE html> <html xmlns:th"http://www.thymeleaf.org"><head><title>PDF Template</title> </head> <body> <h1>User Information</h1> <p>Name: <span th:text"${user.name}&…

干洗店管理系统洗鞋店预约上门小程序洗护流程;

干洗店洗鞋店收银管理系统&#xfe63;智能线上预约洗衣店小程序软件; 闪站侠洗衣洗鞋店收银管理系统&#xff0c;一款集进销存、收衣、收银、会员管理等实用功能于一体的洗护管理软件&#xff0c;适用于各大中小型企业个体工商户&#xff0c;功能强大&#xff0c;操作简单&…

【相关问题解答1】bert中文文本摘要代码:import时无法找到包时,几个潜在的原因和解决方法

【相关问题解答1】bert中文文本摘要代码 写在最前面问题1问题描述一些建议import时无法找到包时&#xff0c;几个潜在的原因和解决方法1. 模块或包的命名冲突解决方法&#xff1a; 2. 错误的导入路径解决方法&#xff1a; 3. 第三方库的使用错误解决方法&#xff1a; 4. 包未正…

数据挖掘(作业4--异常值检测

异常检测方法通常可分为使用参数的方法和基于距离的方法。 1. 使用参数的异常检测方法 1.1 基础理论 使用参数的异常检测方法基于假设数据符合特定的分布&#xff08;如高斯分布、二项分布&#xff09;或模型&#xff08;如混合模型&#xff09;。这些方法通常通过对数据进行…

百度AI智能审核

一、介绍 百度内容审核平台&#xff08;Baidu Content Audit Platform&#xff09;是百度推出的一款用于进行内容审核的平台。该平台利用人工智能技术&#xff0c;对用户上传的各类内容进行审核和过滤&#xff0c;以实现内容的合规和安全&#xff0c;可以识别和过滤涉黄、涉政…

Apache SeaTunnel MongoDB CDC 使用指南

随着数据驱动决策的重要性日益凸显&#xff0c;实时数据处理成为企业竞争力的关键。SeaTunnel MongoDB CDC(Change Data Capture) 源连接器的推出&#xff0c;为开发者提供了一个高效、灵活的工具&#xff0c;以实现对 MongoDB 数据库变更的实时捕获和处理。 本文将深入探讨该连…

LeetCode——贪心算法(Java)

贪心算法 简介[简单] 455. 分发饼干[中等] 376. 摆动序列[中等] 53. 最大子数组和[中等] 122. 买卖股票的最佳时机 II[中等] 55. 跳跃游戏 简介 记录一下自己刷题的历程以及代码。写题过程中参考了 代码随想录的刷题路线。会附上一些个人的思路&#xff0c;如果有错误&#xf…

STM32输入捕获频率和占空比proteus仿真失败

这次用了两天的时间来验证这个功能&#xff0c;虽然实验没有成功&#xff0c;但是也要记录一下&#xff0c;后面能解决了&#xff0c;回来再写上解决的办法&#xff1a; 这个程序最后的实验结果是读取到的CCR1和CCR2的值都是0&#xff0c;所以没有办法算出来频率和占空比。 还…

人工智能|机器学习——BIRCH聚类算法(层次聚类)

这里再来看看另外一种常见的聚类算法BIRCH。BIRCH算法比较适合于数据量大&#xff0c;类别数K也比较多的情况。它运行速度很快&#xff0c;只需要单遍扫描数据集就能进行聚类。 1.什么是流形学习 BIRCH的全称是利用层次方法的平衡迭代规约和聚类&#xff08;Balanced Iterative…

应用程序性能监控(APM)的解决方案

随着技术的不断发展&#xff0c;APM 监控和可观测性的重要性怎么强调都不为过&#xff0c;应用程序已成为业务运营的支柱。随着组织越来越依赖数字解决方案来推动其流程并与用户互动&#xff0c;确保最佳性能和可用性变得至关重要。这超越了系统正常运行时间&#xff0c;深入研…