目录
- 前言
- vector容器代码实现
- 内部成员简介
- 构造函数
- 拷贝函数
- 析构函数
- 迭代器相关
- 容量相关
- 元素访问
- vector的修改操作
- 源代码
前言
我们前面介绍了vector容器的概念以及对其基本使用进行了介绍,如果你在这里不知道vector是什么以及不知道如何使用的话,可以进入本人主页,在C++专栏里有介绍
为了对小白友好,在这我简单介绍一下
C++中的vector是一个动态数组容器,可以存储不同类型的元素。它提供了一系列的成员函数来方便地操作和管理数组。
以下是C++ vector容器的一些特点和功能:
- 动态大小:vector的大小可以根据需要动态调整,可以在运行时添加或删除元素。
- 随机访问:可以通过索引直接访问vector中的元素,支持常数时间的随机访问。
- 自动内存管理:vector会自动处理内存分配和释放,无需手动管理内存。
- 插入和删除:可以在任意位置插入或删除元素,vector会自动调整其他元素的位置。
- 迭代器支持:可以使用迭代器遍历vector中的元素。
- 动态增长:当vector的容量不足时,会自动重新分配更大的内存空间,以容纳更多的元素。
- 元素访问:可以使用下标运算符[]或at()函数来访问元素,也可以使用front()和back()函数分别获取第一个和最后一个元素。
本章节主要对vector容器的手撕实现其简单功能
vector容器代码实现
内部成员简介
命名空间实现与库里vector的隔绝,实现自定义vector
namespace A
{
template<class T> //模版实现vector<类型>
class vector //vector功能实现
{
public:
// Vector的迭代器是一个原生指针
typedef T* iterator;
typedef const T* const_iterator;
....... //函数接口实现
.......
private:
iterator _start; // 指向数据块的开始
iterator _finish; // 指向有效数据的尾
iterator _endOfStorage; // 指向存储容量的尾
};
}
构造函数
vector()
: _start(nullptr)
, _finish(nullptr)
, _endOfStorage(nullptr)
{}
vector(size_t n, const T& value = T())
: _start(nullptr)
, _finish(nullptr)
, _endOfStorage(nullptr)
{
reserve(n);
while (n--)
{
push_back(value);
}
}
* 理论上讲,提供了vector(size_t n, const T& value = T())之后
* vector(int n, const T& value = T())就不需要提供了,但是对于:
* vector<int> v(10, 5);
* 编译器在编译时,认为T已经被实例化为int,而10和5编译器会默认其为int类型
* 就不会走vector(size_t n, const T& value = T())这个构造方法,
* 最终选择的是:vector(InputIterator first, InputIterator last)
* 因为编译器觉得区间构造两个参数类型一致,因此编译器就会将InputIterator实例化为int
* 但是10和5根本不是一个区间,编译时就报错了
* 故需要增加如下构造方法
vector(int n, const T& value = T())
: _start(new T[n])
, _finish(_start + n)
, _endOfStorage(_finish)
{
for (int i = 0; i < n; ++i)
{
_start[i] = value;
}
}
拷贝函数
// 若使用iterator做迭代器,会导致初始化的迭代器区间[first,last)只能是vector的迭代器
// 重新声明迭代器,迭代器区间[first,last)可以是任意容器的迭代器
template<class InputIterator>
vector(InputIterator first, InputIterator last)
{
while (first != last)
{
push_back(*first);
++first;
}
}
vector(const vector<T>& v)
: _start(nullptr)
, _finish(nullptr)
, _endOfStorage(nullptr)
{
reserve(v.capacity());
iterator it = begin();
const_iterator vit = v.cbegin();
while (vit != v.cend())
{
*it++ = *vit++;
}
_finish = it;
}
vector<T>& operator=(vector<T> v)
{
swap(v);
return *this;
}
析构函数
~vector()
{
if (_start)
{
delete[] _start;
_start = _finish = _endOfStorage = nullptr;
}
}
迭代器相关
iterator begin()
{
return _start;
}
iterator end()
{
return _finish;
}
const_iterator cbegin() const
{
return _start;
}
const_iterator cend() const
{
return _finish;
}
容量相关
size_t size() const
{
return _finish - _start;
}
size_t capacity() const
{
return _endOfStorage - _start;
}
bool empty() const
{
return _start == _finish;
}
void reserve(size_t n)
{
if (n > capacity())
{
size_t oldSize = size();
// 1. 开辟新空间
T* tmp = new T[n];
// 2. 拷贝元素
// 这里直接使用memcpy会有问题吗?同学们思考下
//if (_start)
// memcpy(tmp, _start, sizeof(T)*size);
if (_start)
{
for (size_t i = 0; i < oldSize; ++i)
tmp[i] = _start[i];
// 3. 释放旧空间
delete[] _start;
}
_start = tmp;
_finish = _start + oldSize;
_endOfStorage = _start + n;
}
}
void resize(size_t n, const T& value = T())
{
// 1.如果n小于当前的size,则数据个数缩小到n
if (n <= size())
{
_finish = _start + n;
return;
}
// 2.空间不够则增容
if (n > capacity())
reserve(n);
// 3.将size扩大到n
iterator it = _finish;
_finish = _start + n;
while (it != _finish)
{
*it = value;
++it;
}
}
元素访问
T& operator[](size_t pos)
{
assert(pos < size());
return _start[pos];
}
const T& operator[](size_t pos)const
{
assert(pos < size());
return _start[pos];
}
T& front()
{
return *_start;
}
const T& front()const
{
return *_start;
}
T& back()
{
return *(_finish - 1);
}
const T& back()const
{
return *(_finish - 1);
}
vector的修改操作
void push_back(const T& x)
{
insert(end(), x);
}
void pop_back()
{
erase(end() - 1);
}
void swap(vector<T>& v)
{
std::swap(_start, v._start);
std::swap(_finish, v._finish);
std::swap(_endOfStorage, v._endOfStorage);
}
iterator insert(iterator pos, const T& x)
{
assert(pos <= _finish);
// 空间不够先进行增容
if (_finish == _endOfStorage)
{
//size_t size = size();
size_t newCapacity = (0 == capacity()) ? 1 : capacity() * 2;
reserve(newCapacity);
// 如果发生了增容,需要重置pos
pos = _start + size();
}
iterator end = _finish - 1;
while (end >= pos)
{
*(end + 1) = *end;
--end;
}
*pos = x;
++_finish;
return pos;
}
// 返回删除数据的下一个数据
// 方便解决:一边遍历一边删除的迭代器失效问题
iterator erase(iterator pos)
{
// 挪动数据进行删除
iterator begin = pos + 1;
while (begin != _finish)
{
*(begin - 1) = *begin;
++begin;
}
--_finish;
return pos;
}
源代码
#pragma once
#include <iostream>
using namespace std;
#include <assert.h>
namespace A
{
template<class T>
class vector
{
public:
// Vector的迭代器是一个原生指针
typedef T* iterator;
typedef const T* const_iterator;
///
// 构造和销毁
vector()
: _start(nullptr)
, _finish(nullptr)
, _endOfStorage(nullptr)
{}
vector(size_t n, const T& value = T())
: _start(nullptr)
, _finish(nullptr)
, _endOfStorage(nullptr)
{
reserve(n);
while (n--)
{
push_back(value);
}
}
/*
* 理论上将,提供了vector(size_t n, const T& value = T())之后
* vector(int n, const T& value = T())就不需要提供了,但是对于:
* vector<int> v(10, 5);
* 编译器在编译时,认为T已经被实例化为int,而10和5编译器会默认其为int类型
* 就不会走vector(size_t n, const T& value = T())这个构造方法,
* 最终选择的是:vector(InputIterator first, InputIterator last)
* 因为编译器觉得区间构造两个参数类型一致,因此编译器就会将InputIterator实例化为int
* 但是10和5根本不是一个区间,编译时就报错了
* 故需要增加该构造方法
*/
vector(int n, const T& value = T())
: _start(new T[n])
, _finish(_start + n)
, _endOfStorage(_finish)
{
for (int i = 0; i < n; ++i)
{
_start[i] = value;
}
}
// 若使用iterator做迭代器,会导致初始化的迭代器区间[first,last)只能是vector的迭代器
// 重新声明迭代器,迭代器区间[first,last)可以是任意容器的迭代器
template<class InputIterator>
vector(InputIterator first, InputIterator last)
{
while (first != last)
{
push_back(*first);
++first;
}
}
vector(const vector<T>& v)
: _start(nullptr)
, _finish(nullptr)
, _endOfStorage(nullptr)
{
reserve(v.capacity());
iterator it = begin();
const_iterator vit = v.cbegin();
while (vit != v.cend())
{
*it++ = *vit++;
}
_finish = it;
}
vector<T>& operator=(vector<T> v)
{
swap(v);
return *this;
}
~vector()
{
if (_start)
{
delete[] _start;
_start = _finish = _endOfStorage = nullptr;
}
}
/
// 迭代器相关
iterator begin()
{
return _start;
}
iterator end()
{
return _finish;
}
const_iterator cbegin() const
{
return _start;
}
const_iterator cend() const
{
return _finish;
}
//
// 容量相关
size_t size() const
{
return _finish - _start;
}
size_t capacity() const
{
return _endOfStorage - _start;
}
bool empty() const
{
return _start == _finish;
}
void reserve(size_t n)
{
if (n > capacity())
{
size_t oldSize = size();
// 1. 开辟新空间
T* tmp = new T[n];
// 2. 拷贝元素
// 这里直接使用memcpy会有问题吗?同学们思考下
//if (_start)
// memcpy(tmp, _start, sizeof(T)*size);
if (_start)
{
for (size_t i = 0; i < oldSize; ++i)
tmp[i] = _start[i];
// 3. 释放旧空间
delete[] _start;
}
_start = tmp;
_finish = _start + oldSize;
_endOfStorage = _start + n;
}
}
void resize(size_t n, const T& value = T())
{
// 1.如果n小于当前的size,则数据个数缩小到n
if (n <= size())
{
_finish = _start + n;
return;
}
// 2.空间不够则增容
if (n > capacity())
reserve(n);
// 3.将size扩大到n
iterator it = _finish;
_finish = _start + n;
while (it != _finish)
{
*it = value;
++it;
}
}
///
// 元素访问
T& operator[](size_t pos)
{
assert(pos < size());
return _start[pos];
}
const T& operator[](size_t pos)const
{
assert(pos < size());
return _start[pos];
}
T& front()
{
return *_start;
}
const T& front()const
{
return *_start;
}
T& back()
{
return *(_finish - 1);
}
const T& back()const
{
return *(_finish - 1);
}
/
// vector的修改操作
void push_back(const T& x)
{
insert(end(), x);
}
void pop_back()
{
erase(end() - 1);
}
void swap(vector<T>& v)
{
std::swap(_start, v._start);
std::swap(_finish, v._finish);
std::swap(_endOfStorage, v._endOfStorage);
}
iterator insert(iterator pos, const T& x)
{
assert(pos <= _finish);
// 空间不够先进行增容
if (_finish == _endOfStorage)
{
//size_t size = size();
size_t newCapacity = (0 == capacity()) ? 1 : capacity() * 2;
reserve(newCapacity);
// 如果发生了增容,需要重置pos
pos = _start + size();
}
iterator end = _finish - 1;
while (end >= pos)
{
*(end + 1) = *end;
--end;
}
*pos = x;
++_finish;
return pos;
}
// 返回删除数据的下一个数据
// 方便解决:一边遍历一边删除的迭代器失效问题
iterator erase(iterator pos)
{
// 挪动数据进行删除
iterator begin = pos + 1;
while (begin != _finish) {
*(begin - 1) = *begin;
++begin;
}
--_finish;
return pos;
}
private:
iterator _start; // 指向数据块的开始
iterator _finish; // 指向有效数据的尾
iterator _endOfStorage; // 指向存储容量的尾
};
}
/// /
/// 对模拟实现的vector进行严格测试
void TestBitVector1()
{
A::vector<int> v1;
A::vector<int> v2(10, 5);
int array[] = { 1,2,3,4,5 };
A::vector<int> v3(array, array + sizeof(array) / sizeof(array[0]));
A::vector<int> v4(v3);
for (size_t i = 0; i < v2.size(); ++i)
{
cout << v2[i] << " ";
}
cout << endl;
auto it = v3.begin();
while (it != v3.end())
{
cout << *it << " ";
++it;
}
cout << endl;
for (auto e : v4)
{
cout << e << " ";
}
cout << endl;
}
void TestBitVector2()
{
A::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
v.push_back(5);
cout << v.size() << endl;
cout << v.capacity() << endl;
cout << v.front() << endl;
cout << v.back() << endl;
cout << v[0] << endl;
for (auto e : v)
{
cout << e << " ";
}
cout << endl;
v.pop_back();
v.pop_back();
for (auto e : v)
{
cout << e << " ";
}
cout << endl;
v.insert(v.begin(), 0);
for (auto e : v)
{
cout << e << " ";
}
cout << endl;
v.erase(v.begin() + 1);
for (auto e : v)
{
cout << e << " ";
}
cout << endl;
}