论文阅读:FCB-SwinV2 Transformer for Polyp Segmentation

news2024/12/28 1:49:58

这是对FCBFormer的改进,我的关于FCBFormer的论文阅读笔记:论文阅读FCN-Transformer Feature Fusion for PolypSegmentation-CSDN博客

1,整体结构

依然是一个双分支结构,总体结构如下:

其中一个是全卷积分支,一个是Transformer分支。

和FCBFormer不同的是,对两个分支都做了一些修改。

2,FCB分支

本文没有画FCB分支的整体结构,我们借用一下FCBFormer的结构图看一下:

相比FCBFormer,FCB-SwinV2 Transformer模型中的FCB分支进行了以下主要改进:

1)通道维度增加:FCB分支的通道维度被增加,以匹配从SwinV2 Transformer-UNET分支输出的通道维度数量。这样做是为了确保两个分支的输出可以在合并之前具有相同的维度,从而更有效地结合两种架构的优势。

2)组归一化顺序调整:在FCB分支的残差块(RB)中,组归一化(GN)的顺序被调整,以适应SwinV2 Transformer中的残差后归一化(residual post normalization)方法。RB模块的调整如下:

左边为原来的RB模块,右边是本文用的RB模块。主要是把先归一化再卷积,调整为先卷积再做归一化。

3)残差块改进:残差块的设计受到了SwinV2 Transformer中残差后归一化方法的启发。在FCB-SwinV2 Transformer中,残差块的归一化步骤被放置在卷积层之后,这与原始FCBFormer中的顺序不同。

3,TB分支

TB模块采用了SwinV2 Transformer作为其核心,SwinV2 Transformer通过引入“残差后归一化”(residual post normalization)和修改注意力机制来优化原始的Swin Transformer。

解码器模块(scse)如下:

scse模块由cse和sse两个子模块构成。

1)CSE(Channel Squeeze and Excitation)模块是一种注意力机制,它通过显式地建模通道间的依赖关系来增强网络的特征表示能力。

CSE整体结构:

输入特征图: F
1. 通道全局平均池化: G = Global_Average_Pooling(F)
2. 卷积和激活: H = Activation(Conv(G))
3. 逐元素乘法: Output = H * F

2)SSE(Spatial Squeeze and Excitation)模块是一种用于增强特征图中空间特征的注意力机制。

SSE整体结构:

输入特征图: F
1. 通道压缩: G = Conv(F)  # 使用1x1卷积核
2. 空间激励: H = Activation(G)
3. 逐元素乘法: Output = H * F

把编码器和解码器按照UNET的结构组合起来就是TB分支。

4,实验结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1510669.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

浏览器缓存 四种缓存分类 两种缓存类型

浏览器缓存 本文主要包含以下内容: 什么是浏览器缓存按照缓存位置分类 Service WorkerMemory CacheDisk CachePush Cache 按照缓存类型分类 强制缓存协商缓存 缓存读取规则浏览器行为 什么是浏览器缓存 在正式开始讲解浏览器缓存之前,我们先来回顾一…

【保姆级教程】JDK安装与环境变量配置

文章目录 第一步:下载JDK(以1.8为例)第二步:安装第三步:找到默认安装目录第四步:配置环境变量(win10为例) 大家可能会遇到的疑问:一个电脑可以安装多个版本的jdk没有问题…

头脑风暴法是什么?10个值得推荐的头脑风暴模板!

身处职场的你,想必对头脑风暴这个术语并不陌生,它可能是某个同事或者领导的口头禅,每当遇到需要给出方案的场景,头脑风暴或者“脑暴”就会从他们嘴里脱口而出,但你真的了解,头脑风暴是什么意思吗&#xff1…

力扣刷题日志-Day2 (力扣151、43、14)

151. 反转字符串中的单词 给你一个字符串 s ,请你反转字符串中 单词 的顺序。 单词 是由非空格字符组成的字符串。s 中使用至少一个空格将字符串中的 单词 分隔开 思路:根据题目大意,空格之间的就是一个单词,所以我们需要利用…

Sui与数据平台ZettaBlock达成合作,为其公测提供数据

Sui一向以闪电般的速度、无限水平扩展著称,现已迅速成为DeFi活动的重要场所。近期,数据平台ZettaBlock宣布在其开创性的Web3数据平台发布中,选择Sui作为基础集成合作伙伴之一。在ZettaBlock的开放测试版发布之际,构建者和开发者将…

【JAVA】HashMap扩容性能影响及优化策略

🍎个人博客:个人主页 🏆个人专栏:JAVA ⛳️ 功不唐捐,玉汝于成 目录 前言 正文 结语 我的其他博客 前言 在软件开发中,HashMap是一种常用的数据结构,但在处理大量数据时,其扩容…

11、设计模式之享元模式(Flyweight)

一、什么是享元模式 享元模式是一种结构型的设计模式。它的主要目的是通过共享对象来减少系统种对象的数量,其本质就是缓存共享对象,降低内存消耗。 享元模式将需要重复使用的对象分为两个部分:内部状态和外部状态。 内部状态是不会变化的&…

进电子厂了,感触颇多...

作者:三哥 个人网站:https://j3code.cn 本文已收录到语雀:https://www.yuque.com/j3code/me-public-note/lpgzm6y2nv9iw8ec 是的,真进电子厂了,但主人公不是我。 虽然我不是主人公,但是我经历的过程是和主…

【2024-03-12】设计模式之模板模式的理解

实际应用场景:制作月饼 过程描述: 一开始,由人工制作月饼, 第一个:根据脑子里面月饼的形状,先涅出月饼的形状,然后放入面粉和馅料把开口合并起来。 第二个:根据脑子里面月饼的形状&…

短剧小程序系统:打造沉浸式短剧体验,开启短剧新纪元

随着移动互联网的迅猛发展,短剧作为一种新兴的内容形式,正逐渐受到广大用户的喜爱和追捧。为了满足用户对短剧内容的需求和观看体验的提升,短剧小程序系统应运而生,为用户带来了更加便捷、沉浸式的短剧观看体验。 短剧小程序系统…

如何在Linux本地搭建Tale网站并实现无公网ip远程访问

文章目录 前言1. Tale网站搭建1.1 检查本地环境1.2 部署Tale个人博客系统1.3 启动Tale服务1.4 访问博客地址 2. Linux安装Cpolar内网穿透3. 创建Tale博客公网地址4. 使用公网地址访问Tale 前言 今天给大家带来一款基于 Java 语言的轻量级博客开源项目——Tale,Tale…

【Python】科研代码学习:八 FineTune PretrainedModel (用 trainer,用 script);LLM文本生成

【Python】科研代码学习:八 FineTune PretrainedModel [用 trainer,用 script] LLM文本生成 自己整理的 HF 库的核心关系图用 trainer 来微调一个预训练模型用 script 来做训练任务使用 LLM 做生成任务可能犯的错误,以及解决措施 自己整理的 …

8块硬盘故障的存储异常恢复案例一则

关键词 华为存储、硬盘域、LUN热备冗余、重构、预拷贝 oracle rac、多路径 There are many things that can not be broken! 如果觉得本文对你有帮助,欢迎点赞、收藏、评论! 一、问题现象 近期遇到的一个案例,现象是一套oracl…

PXI8540高速数据采集卡

XI高速数据采集卡,PXI8540卡是一种基于PXI总线的模块化仪器,可使用PXI系统,在一个机箱内实现一个综合的测试系统,构成实验室、产品质量检测中心等各种领域的数据采集、波形分析和处理系统。也可构成工业生产过程监控系统。它的主要…

ThreeWayBranch 优化阅读笔记

1. 优化目的 通过重排三分支的 BB 块减少比较指令的执行次数 代码路径: bolt/lib/Passes/ThreeWayBranch.cpp2. 效果 优化前: 注: 黄色数字表示BB块编号, 紫色表示该分支跳转的次数,绿色是代码里BB块的变量名 ThreeWayBranc…

P6327 区间加区间 sin 和 (线段树+数学)

传送门https://www.luogu.com.cn/problem/P6327 比较板子的一题,主要考察公式 //sin(ax)sinxcosasinacosx //cos(ax)cosacosx-sinasinx 直接贴代码吧 // Problem: // P6327 区间加区间 sin 和 // // Contest: Luogu // URL: https://www.luogu.com.cn/pr…

@Conditional注解详解

目录 一、Conditional注解作用 二、Conditional源码解析 2.1 Conditional源码 2.2 Condition源码 三、Conditional案例 3.1 Conditional作用在类上案例 3.1.1 配置文件 3.1.2 Condition实现类 3.1.3 Bean内容类 3.1.4 Config类 3.1.5 Controller类 3.1.6 测试结果 3…

ChatGPT GPT4科研应用、数据分析与机器学习、论文高效写作、AI绘图技术

原文链接:ChatGPT GPT4科研应用、数据分析与机器学习、论文高效写作、AI绘图技术https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247596849&idx3&sn111d68286f9752008bca95a5ec575bb3&chksmfa823ad6cdf5b3c0c446eceb5cf29cccc3161d746bdd9f2…

Lim接口测试平台开展自动化的优势

一、数据对比 使用Lim接口测试平台后,相比以往采用Postman或excel关键字驱动带来的效率提升: 编写效率提升300%,原来10个步骤的用例,一个工作日调试编写只能输出6条,现在一天能输出18条。维护成本复杂度降低100%&…