STM32存储左右互搏 SPI总线读写SD/MicroSD/TF卡

news2025/1/11 5:56:01

STM32存储左右互搏 SPI总线读写SD/MicroSD/TF卡

SD/MicroSD/TF卡是基于FLASH的一种常见非易失存储单元,由接口协议电路和FLASH构成。市面上由不同尺寸和不同容量的卡,手机领域用的TF卡实际就是MicroSD卡,尺寸比SD卡小,而电路和协议操作则是一样。这里介绍STM32CUBEIDE开发平台HAL库SPI总线操作SD/MicroSD/TF卡的例程。

除了在硬件板子上集成SD/MicroSD/TF卡插槽的方式,也可以使用SD/MicroSD/TF卡模块,如下图所示为其中一种(支持MicroSD/TF卡):
在这里插入图片描述

SD/MicroSD/TF卡访问接口

SD/MicroSD/TF卡可以通过访问更快的SDIO专用协议接口或是访问慢一些的普通SPI接口进行操作,两种协议接口复用管脚。通过SPI接口进行操作,上面介绍的模块的接口连接特性如下:
在这里插入图片描述
共6个引脚(GND、VCC、MISO、MOSI、SCK、CS)与标准SPI接口对应。除了供电为5V,通讯管脚的电平由于模块内部进行了转换,直接和STM32的一个SPI接口连接即可。
在这里插入图片描述
如果不采用模块,直接集成卡槽使用,SDIO协议管脚和SPI协议管脚的复用关系如下:
在这里插入图片描述

例程采用STM32F401CCU6芯片(兼容STM32F401RCT6, 仅封装不同)对4GB的TF卡进行操作

STM32工程配置

首先建立基本工程并设置时钟:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
配置SPI1:
在这里插入图片描述
在这里插入图片描述
不配置DMA:
在这里插入图片描述
PA4管脚是通过软件代码控制的片选,单独配置为GPIO输出:
在这里插入图片描述
在这里插入图片描述

配置UART1做为通讯口:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
DMA不配置:
在这里插入图片描述
保存并生成初始代码:
在这里插入图片描述

STM32工程代码

UART串口printf打印输出实现参考:STM32 UART串口printf函数应用及浮点打印代码空间节省 (HAL)

建立SPI操作SD/MicroSD/TF卡库头文件SDdriver.h:

#include "main.h"
/*
CID	128bit	卡标识号;
RCA	16bit	相对卡地址(Relative card address):本地系统中卡的地址,动态变化。在主机初始的时候确定。SPI模式中没有;
CSD	128bit	卡描述数据:卡操作条件相关的信息数据;
SCR	64bit	SD配置寄存器:SD卡特定信息数据;
OCR	32bit	操作条件寄存器。
*/


extern uint8_t SD_TYPE;

//SD卡类型
#define ERR     	0x00
#define MMC				0x01
#define V1				0x02
#define V2				0x04
#define V2HC			0x06

#define DUMMY_BYTE				 0xFF 
#define MSD_BLOCKSIZE			 512


//CMD定义
#define CMD0    0       //卡复位
#define CMD1    1
#define CMD8    8       //命令8 ,SEND_IF_COND
#define CMD9    9       //命令9 ,读CSD数据
#define CMD10   10      //命令10,读CID数据
#define CMD12   12      //命令12,停止数据传输
#define CMD16   16      //命令16,设置SectorSize 应返回0x00
#define CMD17   17      //命令17,读sector
#define CMD18   18      //命令18,读Multi sector
#define CMD23   23      //命令23,设置多sector写入前预先擦除N个block
#define CMD24   24      //命令24,写sector
#define CMD25   25      //命令25,写Multi sector
#define CMD41   41      //命令41,应返回0x00
#define CMD55   55      //命令55,应返回0x01
#define CMD58   58      //命令58,读OCR信息
#define CMD59   59      //命令59,使能/禁止CRC,应返回0x00

//数据写入回应字意义
#define MSD_DATA_OK                0x05
#define MSD_DATA_CRC_ERROR         0x0B
#define MSD_DATA_WRITE_ERROR       0x0D
#define MSD_DATA_OTHER_ERROR       0xFF
//SD卡回应标记字
#define MSD_RESPONSE_NO_ERROR      0x00
#define MSD_IN_IDLE_STATE          0x01
#define MSD_ERASE_RESET            0x02
#define MSD_ILLEGAL_COMMAND        0x04
#define MSD_COM_CRC_ERROR          0x08
#define MSD_ERASE_SEQUENCE_ERROR   0x10
#define MSD_ADDRESS_ERROR          0x20
#define MSD_PARAMETER_ERROR        0x40
#define MSD_RESPONSE_FAILURE       0xFF


enum _CD_HOLD
{
	HOLD = 0,
	RELEASE = 1,
};

typedef struct               /* Card Specific Data */
{
  uint8_t  CSDStruct;            /* CSD structure */
  uint8_t  SysSpecVersion;       /* System specification version */
  uint8_t  Reserved1;            /* Reserved */
  uint8_t  TAAC;                 /* Data read access-time 1 */
  uint8_t  NSAC;                 /* Data read access-time 2 in CLK cycles */
  uint8_t  MaxBusClkFrec;        /* Max. bus clock frequency */
  uint16_t CardComdClasses;      /* Card command classes */
  uint8_t  RdBlockLen;           /* Max. read data block length */
  uint8_t  PartBlockRead;        /* Partial blocks for read allowed */
  uint8_t  WrBlockMisalign;      /* Write block misalignment */
  uint8_t  RdBlockMisalign;      /* Read block misalignment */
  uint8_t  DSRImpl;              /* DSR implemented */
  uint8_t  Reserved2;            /* Reserved */
  uint32_t DeviceSize;           /* Device Size */
  uint8_t  MaxRdCurrentVDDMin;   /* Max. read current @ VDD min */
  uint8_t  MaxRdCurrentVDDMax;   /* Max. read current @ VDD max */
  uint8_t  MaxWrCurrentVDDMin;   /* Max. write current @ VDD min */
  uint8_t  MaxWrCurrentVDDMax;   /* Max. write current @ VDD max */
  uint8_t  DeviceSizeMul;        /* Device size multiplier */
  uint8_t  EraseGrSize;          /* Erase group size */
  uint8_t  EraseGrMul;           /* Erase group size multiplier */
  uint8_t  WrProtectGrSize;      /* Write protect group size */
  uint8_t  WrProtectGrEnable;    /* Write protect group enable */
  uint8_t  ManDeflECC;           /* Manufacturer default ECC */
  uint8_t  WrSpeedFact;          /* Write speed factor */
  uint8_t  MaxWrBlockLen;        /* Max. write data block length */
  uint8_t  WriteBlockPaPartial;  /* Partial blocks for write allowed */
  uint8_t  Reserved3;            /* Reserded */
  uint8_t  ContentProtectAppli;  /* Content protection application */
  uint8_t  FileFormatGrouop;     /* File format group */
  uint8_t  CopyFlag;             /* Copy flag (OTP) */
  uint8_t  PermWrProtect;        /* Permanent write protection */
  uint8_t  TempWrProtect;        /* Temporary write protection */
  uint8_t  FileFormat;           /* File Format */
  uint8_t  ECC;                  /* ECC code */
  uint8_t  CSD_CRC;              /* CSD CRC */
  uint8_t  Reserved4;            /* always 1*/
}
MSD_CSD;

typedef struct				 /*Card Identification Data*/
{
  uint8_t  ManufacturerID;       /* ManufacturerID */
  uint16_t OEM_AppliID;          /* OEM/Application ID */
  uint32_t ProdName1;            /* Product Name part1 */
  uint8_t  ProdName2;            /* Product Name part2*/
  uint8_t  ProdRev;              /* Product Revision */
  uint32_t ProdSN;               /* Product Serial Number */
  uint8_t  Reserved1;            /* Reserved1 */
  uint16_t ManufactDate;         /* Manufacturing Date */
  uint8_t  CID_CRC;              /* CID CRC */
  uint8_t  Reserved2;            /* always 1 */
}
MSD_CID;

typedef struct
{
  MSD_CSD CSD;
  MSD_CID CID;
  uint32_t Capacity;              /* Card Capacity */
  uint32_t BlockSize;             /* Card Block Size */
  uint16_t RCA;
  uint8_t CardType;
  uint32_t SpaceTotal;            /* Total space size in file system */
  uint32_t SpaceFree;      	     /* Free space size in file system */
}
MSD_CARDINFO, *PMSD_CARDINFO;

extern MSD_CARDINFO SD0_CardInfo;

int             SD_RST(void);
uint8_t		 	SD_init(void);
void 			SD_CS(uint8_t p);
uint32_t  	    SD_GetSectorCount(void);
uint8_t 		SD_GETCID (uint8_t *cid_data);
uint8_t 		SD_GETCSD(uint8_t *csd_data);
int 			MSD0_GetCardInfo(PMSD_CARDINFO SD0_CardInfo);
uint8_t			SD_ReceiveData(uint8_t *data, uint16_t len);
uint8_t 		SD_SendBlock(uint8_t*buf,uint8_t cmd);
uint8_t 		SD_ReadDisk(uint8_t*buf,uint32_t sector,uint8_t cnt);
uint8_t 		SD_WriteDisk(uint8_t*buf,uint32_t sector,uint8_t cnt);


void SPI_setspeed(uint32_t speed);
uint8_t spi_readwrite(uint8_t Txdata);

建立SPI操作SD/MicroSD/TF卡库头文件SDdriver.c:

#include "SDdriver.h"

extern SPI_HandleTypeDef hspi1;
extern void PY_Delay_us_t(uint32_t Delay);

uint8_t SD_TYPE=0x00;
MSD_CARDINFO SD0_CardInfo;

#define SD_CS_Pin GPIO_PIN_4
#define SD_CS_GPIO_Port GPIOA
#define SD_CS_EN HAL_GPIO_WritePin(SD_CS_GPIO_Port,SD_CS_Pin,GPIO_PIN_RESET)
#define SD_CS_DEN HAL_GPIO_WritePin(SD_CS_GPIO_Port,SD_CS_Pin,GPIO_PIN_SET)

int SD_RST(void)
{
  uint8_t rst;

  SD_CS_DEN;
  PY_Delay_us_t(20000);
  SD_CS_EN;
  PY_Delay_us_t(1);
  spi_readwrite(CMD0 | 0x40);
  spi_readwrite(0 >> 24);
  spi_readwrite(0 >> 16);
  spi_readwrite(0 >> 8);
  spi_readwrite(0);
  spi_readwrite(0x95);

  for(uint32_t i=0; i<1000; i++)
  {
	  rst=spi_readwrite(0xFF);
	  if((rst&0X80)==0) break;
	  PY_Delay_us_t(100);
  }
      if((rst&0X80)==0) return 0x01;
      else return 0;
}

int SD_sendcmd(uint8_t cmd,uint32_t arg,uint8_t crc)
{
  uint8_t rst;
  uint8_t idle;

  SD_CS_DEN;
  PY_Delay_us_t(20000);
  SD_CS_EN;
  PY_Delay_us_t(1);
  do{
		idle=spi_readwrite(0xFF);
		PY_Delay_us_t(1);
  }while(idle!=0xFF); //Check SD idle status

  spi_readwrite(cmd | 0x40);
  spi_readwrite(arg >> 24);
  spi_readwrite(arg >> 16);
  spi_readwrite(arg >> 8);
  spi_readwrite(arg);
  spi_readwrite(crc);

  if(cmd==CMD12) spi_readwrite(0xFF); //Stop data transmission

  do{
		rst=spi_readwrite(0xFF);
		PY_Delay_us_t(1);
  }while(rst&0x80);

  return rst;
}
/////////////////////////////////////////////////////////////
//SD卡初始化
////////////////////////////////////////////////////////////
uint8_t SD_init(void)
{
	uint8_t rst;
	uint8_t buff[6] = {0};
	uint16_t retry; 
	uint8_t i;

	SPI_setspeed(SPI_BAUDRATEPRESCALER_256);
	SD_CS_DEN;
	PY_Delay_us_t(1);
	for(retry=0;retry<10;retry++) //向总线最少发送74个脉冲,为了让SD卡正常启动 (唤醒SD卡)
	{
		spi_readwrite(0xFF);
	};
    //发送新的命令之前,需要取消之前的片选,额外发多 8个 CLK (发送0xFF无效数据),结束之前的操作。

	//SD卡进入IDLE状态
	do{
		rst = SD_RST();
		PY_Delay_us_t(1);
	}while(rst!=0x01);

	//查看SD卡的类型
	SD_TYPE=0;
	rst = SD_sendcmd(CMD8, 0x1AA, 0x87);

	if(rst==0x01)
	{
		for(i=0;i<4;i++) buff[i]=spi_readwrite(0xFF);	//Get trailing return value of R7 resp
		if(buff[2]==0X01&&buff[3]==0XAA)//卡是否支持2.7~3.6V
		{
			retry=0XFFFE;
			do{
				SD_sendcmd(CMD55,0,0X01);	//发送CMD55
				rst=SD_sendcmd(CMD41,0x40000000,0X01);//发送CMD41
			}while(rst&&retry--);

			if(retry&&SD_sendcmd(CMD58,0,0X01)==0)//鉴别SD2.0卡版本开始
			{
				for(i=0;i<4;i++)buff[i]=spi_readwrite(0XFF);//得到OCR值
				if(buff[0]&0x40){
					SD_TYPE=V2HC;
				}else {
					SD_TYPE=V2;
				}						
			}
		}else{
			SD_sendcmd(CMD55,0,0X01);			//发送CMD55
			rst=SD_sendcmd(CMD41,0,0X01);	//发送CMD41
			if(rst<=1)
			{
				SD_TYPE=V1;
				retry=0XFFFE;
				do //等待退出IDLE模式
				{
					SD_sendcmd(CMD55,0,0X01);	//发送CMD55
					rst=SD_sendcmd(CMD41,0,0X01);//发送CMD41
				}while(rst&&retry--);
			}else//MMC卡不支持CMD55+CMD41识别
			{
				SD_TYPE=MMC;//MMC V3
				retry=0XFFFE;
				do //等待退出IDLE模式
				{											    
					rst=SD_sendcmd(CMD1,0,0X01);//发送CMD1
				}while(rst&&retry--);
			}
			if(retry==0||SD_sendcmd(CMD16,512,0X01)!=0)SD_TYPE=ERR;//错误的卡
		}
	}
	SD_CS_DEN;
	SPI_setspeed(SPI_BAUDRATEPRESCALER_2);
    return SD_TYPE;
}

//读取指定长度数据
uint8_t SD_ReceiveData(uint8_t *data, uint16_t len)
{
   uint8_t rst;
   SD_CS_EN;
   do
   { 
      rst = spi_readwrite(0xFF);
      PY_Delay_us_t(100);
	}while(rst != 0xFE);

   while(len--)
   {
     *data = spi_readwrite(0xFF);
     data++;
   }
   spi_readwrite(0xFF);
   spi_readwrite(0xFF);
   return 0;
}

//向sd卡写入一个数据包的内容 512字节
uint8_t SD_SendBlock(uint8_t*buf,uint8_t cmd)
{	
	uint16_t t;	
    uint8_t rst;
	do{
		rst=spi_readwrite(0xFF);
	}while(rst!=0xFF);

	spi_readwrite(cmd);
	if(cmd!=0XFD)//不是结束指令
	{
		for(t=0;t<512;t++)spi_readwrite(buf[t]);//提高速度,减少函数传参时间
	    spi_readwrite(0xFF);//忽略crc
	    spi_readwrite(0xFF);
		t=spi_readwrite(0xFF);//接收响应
		if((t&0x1F)!=0x05)return 2;//响应错误
	}						 									  					    
    return 0;//写入成功
}

//获取CID信息
uint8_t SD_GETCID (uint8_t *cid_data)
{
		uint8_t rst;
	    rst=SD_sendcmd(CMD10,0,0x01); //读取CID寄存器
		if(rst==0x00)
		{
			rst=SD_ReceiveData(cid_data,16);
		}
		SD_CS_DEN;
		if(rst)return 1;
		else return 0;
}
//获取CSD信息
uint8_t SD_GETCSD(uint8_t *csd_data){
		uint8_t rst;
        rst=SD_sendcmd(CMD9,0,0x01);//发CMD9命令,读CSD寄存器
        if(rst==0)
	    {
    	   rst=SD_ReceiveData(csd_data, 16);//接收16个字节的数据
        }
	    SD_CS_DEN;//取消片选
	    if(rst)return 1;
	    else return 0;
}
//获取SD卡的总扇区数
uint32_t SD_GetSectorCount(void)
{
        uint8_t csd[16];
        uint32_t Capacity;
        uint8_t n;
		uint16_t csize;  					    
	    //取CSD信息,如果期间出错,返回0
        if(SD_GETCSD(csd)!=0) return 0;
        //如果为SDHC卡,按照下面方式计算
        if((csd[0]&0xC0)==0x40)	 //V2.00的卡
        {
		  csize = csd[9] + ((uint16_t)csd[8] << 8) + 1;
		  Capacity = (uint32_t)csize << 10;//得到扇区数
        }
        else//V1.XX的卡
        {
		  n = (csd[5] & 15) + ((csd[10] & 128) >> 7) + ((csd[9] & 3) << 1) + 2;
		  csize = (csd[8] >> 6) + ((uint16_t)csd[7] << 2) + ((uint16_t)(csd[6] & 3) << 10) + 1;
		  Capacity= (uint32_t)csize << (n - 9);//得到扇区数
        }
    return Capacity;
}
int MSD0_GetCardInfo(PMSD_CARDINFO SD0_CardInfo)
{
  uint8_t rst;
  uint8_t CSD_Tab[16];
  uint8_t CID_Tab[16];

  /* Send CMD9, Read CSD */
  rst = SD_sendcmd(CMD9, 0, 0xFF);
  if(rst != 0x00)
  {
    return rst;
  }

  if(SD_ReceiveData(CSD_Tab, 16))
  {
	return 1;
  }

  /* Send CMD10, Read CID */
  rst = SD_sendcmd(CMD10, 0, 0xFF);
  if(rst != 0x00)
  {
    return rst;
  }

  if(SD_ReceiveData(CID_Tab, 16))
  {
	return 2;
  }  

  /* Byte 0 */
  SD0_CardInfo->CSD.CSDStruct = (CSD_Tab[0] & 0xC0) >> 6;
  SD0_CardInfo->CSD.SysSpecVersion = (CSD_Tab[0] & 0x3C) >> 2;
  SD0_CardInfo->CSD.Reserved1 = CSD_Tab[0] & 0x03;
  /* Byte 1 */
  SD0_CardInfo->CSD.TAAC = CSD_Tab[1] ;
  /* Byte 2 */
  SD0_CardInfo->CSD.NSAC = CSD_Tab[2];
  /* Byte 3 */
  SD0_CardInfo->CSD.MaxBusClkFrec = CSD_Tab[3];
  /* Byte 4 */
  SD0_CardInfo->CSD.CardComdClasses = CSD_Tab[4] << 4;
  /* Byte 5 */
  SD0_CardInfo->CSD.CardComdClasses |= (CSD_Tab[5] & 0xF0) >> 4;
  SD0_CardInfo->CSD.RdBlockLen = CSD_Tab[5] & 0x0F;
  /* Byte 6 */
  SD0_CardInfo->CSD.PartBlockRead = (CSD_Tab[6] & 0x80) >> 7;
  SD0_CardInfo->CSD.WrBlockMisalign = (CSD_Tab[6] & 0x40) >> 6;
  SD0_CardInfo->CSD.RdBlockMisalign = (CSD_Tab[6] & 0x20) >> 5;
  SD0_CardInfo->CSD.DSRImpl = (CSD_Tab[6] & 0x10) >> 4;
  SD0_CardInfo->CSD.Reserved2 = 0; /* Reserved */
  SD0_CardInfo->CSD.DeviceSize = (CSD_Tab[6] & 0x03) << 10;
  /* Byte 7 */
  SD0_CardInfo->CSD.DeviceSize |= (CSD_Tab[7]) << 2;
  /* Byte 8 */
  SD0_CardInfo->CSD.DeviceSize |= (CSD_Tab[8] & 0xC0) >> 6;
  SD0_CardInfo->CSD.MaxRdCurrentVDDMin = (CSD_Tab[8] & 0x38) >> 3;
  SD0_CardInfo->CSD.MaxRdCurrentVDDMax = (CSD_Tab[8] & 0x07);
  /* Byte 9 */
  SD0_CardInfo->CSD.MaxWrCurrentVDDMin = (CSD_Tab[9] & 0xE0) >> 5;
  SD0_CardInfo->CSD.MaxWrCurrentVDDMax = (CSD_Tab[9] & 0x1C) >> 2;
  SD0_CardInfo->CSD.DeviceSizeMul = (CSD_Tab[9] & 0x03) << 1;
  /* Byte 10 */
  SD0_CardInfo->CSD.DeviceSizeMul |= (CSD_Tab[10] & 0x80) >> 7;
  SD0_CardInfo->CSD.EraseGrSize = (CSD_Tab[10] & 0x7C) >> 2;
  SD0_CardInfo->CSD.EraseGrMul = (CSD_Tab[10] & 0x03) << 3;
  /* Byte 11 */
  SD0_CardInfo->CSD.EraseGrMul |= (CSD_Tab[11] & 0xE0) >> 5;
  SD0_CardInfo->CSD.WrProtectGrSize = (CSD_Tab[11] & 0x1F);
  /* Byte 12 */
  SD0_CardInfo->CSD.WrProtectGrEnable = (CSD_Tab[12] & 0x80) >> 7;
  SD0_CardInfo->CSD.ManDeflECC = (CSD_Tab[12] & 0x60) >> 5;
  SD0_CardInfo->CSD.WrSpeedFact = (CSD_Tab[12] & 0x1C) >> 2;
  SD0_CardInfo->CSD.MaxWrBlockLen = (CSD_Tab[12] & 0x03) << 2;
  /* Byte 13 */
  SD0_CardInfo->CSD.MaxWrBlockLen |= (CSD_Tab[13] & 0xc0) >> 6;
  SD0_CardInfo->CSD.WriteBlockPaPartial = (CSD_Tab[13] & 0x20) >> 5;
  SD0_CardInfo->CSD.Reserved3 = 0;
  SD0_CardInfo->CSD.ContentProtectAppli = (CSD_Tab[13] & 0x01);
  /* Byte 14 */
  SD0_CardInfo->CSD.FileFormatGrouop = (CSD_Tab[14] & 0x80) >> 7;
  SD0_CardInfo->CSD.CopyFlag = (CSD_Tab[14] & 0x40) >> 6;
  SD0_CardInfo->CSD.PermWrProtect = (CSD_Tab[14] & 0x20) >> 5;
  SD0_CardInfo->CSD.TempWrProtect = (CSD_Tab[14] & 0x10) >> 4;
  SD0_CardInfo->CSD.FileFormat = (CSD_Tab[14] & 0x0C) >> 2;
  SD0_CardInfo->CSD.ECC = (CSD_Tab[14] & 0x03);
  /* Byte 15 */
  SD0_CardInfo->CSD.CSD_CRC = (CSD_Tab[15] & 0xFE) >> 1;
  SD0_CardInfo->CSD.Reserved4 = 1;

  if(SD0_CardInfo->CardType == V2HC)
  {
	 /* Byte 7 */
	 SD0_CardInfo->CSD.DeviceSize = (uint16_t)(CSD_Tab[8]) *256;
	 /* Byte 8 */
	 SD0_CardInfo->CSD.DeviceSize += CSD_Tab[9] ;
  }

  SD0_CardInfo->Capacity = SD0_CardInfo->CSD.DeviceSize * MSD_BLOCKSIZE * 1024;
  SD0_CardInfo->BlockSize = MSD_BLOCKSIZE;

  /* Byte 0 */
  SD0_CardInfo->CID.ManufacturerID = CID_Tab[0];
  /* Byte 1 */
  SD0_CardInfo->CID.OEM_AppliID = CID_Tab[1] << 8;
  /* Byte 2 */
  SD0_CardInfo->CID.OEM_AppliID |= CID_Tab[2];
  /* Byte 3 */
  SD0_CardInfo->CID.ProdName1 = CID_Tab[3] << 24;
  /* Byte 4 */
  SD0_CardInfo->CID.ProdName1 |= CID_Tab[4] << 16;
  /* Byte 5 */
  SD0_CardInfo->CID.ProdName1 |= CID_Tab[5] << 8;
  /* Byte 6 */
  SD0_CardInfo->CID.ProdName1 |= CID_Tab[6];
  /* Byte 7 */
  SD0_CardInfo->CID.ProdName2 = CID_Tab[7];
  /* Byte 8 */
  SD0_CardInfo->CID.ProdRev = CID_Tab[8];
  /* Byte 9 */
  SD0_CardInfo->CID.ProdSN = CID_Tab[9] << 24;
  /* Byte 10 */
  SD0_CardInfo->CID.ProdSN |= CID_Tab[10] << 16;
  /* Byte 11 */
  SD0_CardInfo->CID.ProdSN |= CID_Tab[11] << 8;
  /* Byte 12 */
  SD0_CardInfo->CID.ProdSN |= CID_Tab[12];
  /* Byte 13 */
  SD0_CardInfo->CID.Reserved1 |= (CID_Tab[13] & 0xF0) >> 4;
  /* Byte 14 */
  SD0_CardInfo->CID.ManufactDate = (CID_Tab[13] & 0x0F) << 8;
  /* Byte 15 */
  SD0_CardInfo->CID.ManufactDate |= CID_Tab[14];
  /* Byte 16 */
  SD0_CardInfo->CID.CID_CRC = (CID_Tab[15] & 0xFE) >> 1;
  SD0_CardInfo->CID.Reserved2 = 1;

  return 0;  
}


//写SD卡
//buf:数据缓存区
//sector:起始扇区
//cnt:扇区数
//返回值:0,ok;其他,失败.
uint8_t SD_WriteDisk(uint8_t*buf,uint32_t sector,uint8_t cnt)
{
	uint8_t rst;
	if(SD_TYPE!=V2HC) sector *= 512;//转换为字节地址
	if(cnt==1)
	{
		rst=SD_sendcmd(CMD24,sector,0X01);//读命令
		if(rst==0)//指令发送成功
		{
			rst=SD_SendBlock(buf,0xFE);//写512个字节
		}
	}
	else
	{
		if(SD_TYPE!=MMC)
		{
			SD_sendcmd(CMD55,0,0X01);	
			SD_sendcmd(CMD23,cnt,0X01);//发送指令
		}
 		rst=SD_sendcmd(CMD25,sector,0X01);//连续读命令
		if(rst==0)
		{
			do
			{
				rst=SD_SendBlock(buf,0xFC);//接收512个字节
				buf+=512;  
			}while(--cnt && rst==0);
			rst=SD_SendBlock(0,0xFD);//接收512个字节
		}
	}   
	SD_CS_DEN;//取消片选
	return rst;//
}	
//读SD卡
//buf:数据缓存区
//sector:扇区
//cnt:扇区数
//返回值:0,ok;其他,失败.
uint8_t SD_ReadDisk(uint8_t*buf,uint32_t sector,uint8_t cnt)
{
	uint8_t rst;
	if(SD_TYPE!=V2HC)sector <<= 9;//转换为字节地址
	if(cnt==1)
	{
		rst=SD_sendcmd(CMD17,sector,0X01);//读命令
		if(rst==0)//指令发送成功
		{
			rst=SD_ReceiveData(buf,512);//接收512个字节
		}
	}
	else
	{
		rst=SD_sendcmd(CMD18,sector,0X01);//连续读命令
		do
		{
			rst=SD_ReceiveData(buf,512);//接收512个字节
			buf+=512;  
		}while(--cnt && rst==0);
		SD_sendcmd(CMD12,0,0X01);	//发送停止命令
	}   
	SD_CS_DEN;//取消片选
	return rst;//
}

uint8_t spi_readwrite(uint8_t Txdata)
{
	uint8_t rd = 0xa5;
	uint8_t td = Txdata;
	HAL_SPI_TransmitReceive(&hspi1, &td, &rd, 1 ,2700);
	return rd;
}
//SPI1波特率设置
void SPI_setspeed(uint32_t speed)
{
	hspi1.Init.BaudRatePrescaler = speed;
}


代码实现在main.c文件里,实现如下功能:

  1. 串口收到0x01指令,初始化SD/MicroSD/TF卡
  2. 串口收到0x02指令,写一扇区(512字节)数据
  3. 串口收到0x03指令,读一扇区(512字节)数据
  4. 串口收到0x04指令,读取CID信息
  5. 串口收到0x05指令,读取CSD信息
  6. 串口收到0x06指令,读取扇区数量

完整main.c代码如下:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "usart.h"
#include "SDdriver.h"
#include "string.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{
  __IO uint32_t firstms, secondms;
  __IO uint32_t counter = 0;

  firstms = HAL_GetTick()+1;
  secondms = firstms+1;

  while(uwTick!=firstms) ;

  while(uwTick!=secondms) counter++;

  usDelayBase = ((float)counter)/1000;
}

void PY_Delay_us_t(uint32_t Delay)
{
  __IO uint32_t delayReg;
  __IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}

void PY_usDelayOptimize(void)
{
  __IO uint32_t firstms, secondms;
  __IO float coe = 1.0;

  firstms = HAL_GetTick();
  PY_Delay_us_t(1000000) ;
  secondms = HAL_GetTick();

  coe = ((float)1000)/(secondms-firstms);
  usDelayBase = coe*usDelayBase;
}


void PY_Delay_us(uint32_t Delay)
{
  __IO uint32_t delayReg;

  __IO uint32_t msNum = Delay/1000;
  __IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);

  if(msNum>0) HAL_Delay(msNum);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;

UART_HandleTypeDef huart1;

/* USER CODE BEGIN PV */
uint8_t uart1_rx[16];
uint8_t cmd;
uint8_t SD_Status = 0;
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
#define sector_byte_size 512
uint8_t sdbuffer[sector_byte_size];
uint8_t sdinfo[16];
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_SPI1_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
  PY_usDelayTest();
  PY_usDelayOptimize();

  HAL_UART_Receive_IT(&huart1, uart1_rx, 1);

  /* USER CODE END 2 */
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
     if(cmd==1) //SD Init
     {
    	 cmd = 0;

    	 SD_Status = SD_init();
    	 if(SD_Status == 0) printf("\r\nSD initial failure\r\n");
    	 else
    	 {
        	 printf("\r\nSD type number: %d\r\n", SD_Status);
        	 printf("MMC: 1\r\n");
        	 printf("V1: 2\r\n");
        	 printf("V2: 4\r\n");
        	 printf("V2HC: 6\r\n");
    	 }
     }

     else if(cmd==2) //Write one block
     {
    	 cmd = 0;

    	 if(SD_Status == 0) printf("\r\nSD initial failure\r\n");
    	 else
    	 {
       	   for(uint32_t i=0;i<sector_byte_size;i++)
       	   {
       		  sdbuffer[i]=i;
       	   }

       	   SD_WriteDisk(sdbuffer, 0, 1);

       	   printf("\r\nSD write done\r\n");
    	 }
     }

     else if(cmd==3) //Read one block
     {
    	 cmd = 0;

    	 if(SD_Status == 0) printf("\r\nSD initial failure\r\n");
    	 else
    	 {
        	 memset(sdbuffer, 0 , sector_byte_size);
        	 SD_ReadDisk(sdbuffer, 0, 1);

             for(uint32_t j=0; j<sector_byte_size; j++)
             {
            	 printf("%d ", sdbuffer[j]);
             }

             printf("\r\n");
    	 }
     }

     else if(cmd==4) //Get CID
     {
    	 cmd = 0;

    	 if(SD_Status == 0) printf("\r\nSD initial failure\r\n");
    	 else
    	 {
        	 if(SD_GETCID((uint8_t *)sdinfo)==0)
        	 {
        		printf("CID: ");
        		for(uint32_t i=0; i<16; i++)
        		{
        			printf("%.2x ", sdinfo[i]);
        		}
        		printf("\r\n");
        	 }
    	 }
     }

     else if(cmd==5) //Get CSD
     {
    	 cmd = 0;

    	 if(SD_Status == 0) printf("\r\nSD initial failure\r\n");
    	 else
    	 {
        	 if(SD_GETCSD((uint8_t *)sdinfo)==0)
        	 {
        		printf("CSD: ");
        		for(uint32_t i=0; i<16; i++)
        		{
        			printf("%.2x ", sdinfo[i]);
        		}
        		printf("\r\n");
        	 }
    	 }
     }

     else if(cmd==6) //Get sector number
     {
    	 cmd = 0;

    	 if(SD_Status == 0) printf("\r\nSD initial failure\r\n");
    	 else
    	 {
    		 printf("Sector number: %u in 512 bytes per sector\r\n", (unsigned int)SD_GetSectorCount());
    	 }
     }

     else;
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 25;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief SPI1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_SPI1_Init(void)
{

  /* USER CODE BEGIN SPI1_Init 0 */

  /* USER CODE END SPI1_Init 0 */

  /* USER CODE BEGIN SPI1_Init 1 */

  /* USER CODE END SPI1_Init 1 */
  /* SPI1 parameter configuration*/
  hspi1.Instance = SPI1;
  hspi1.Init.Mode = SPI_MODE_MASTER;
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  hspi1.Init.NSS = SPI_NSS_SOFT;
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi1.Init.CRCPolynomial = 10;
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI1_Init 2 */

  /* USER CODE END SPI1_Init 2 */

}

/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(SPI1_CS_GPIO_Port, SPI1_CS_Pin, GPIO_PIN_SET);

  /*Configure GPIO pin : SPI1_CS_Pin */
  GPIO_InitStruct.Pin = SPI1_CS_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  HAL_GPIO_Init(SPI1_CS_GPIO_Port, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
	if(huart==&huart1)
	{
		cmd = uart1_rx[0];
		HAL_UART_Receive_IT(&huart1, uart1_rx, 1);
	}

}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

STM32例程测试

串口指令0x01测试效果如下:
在这里插入图片描述

串口指令0x02测试效果如下:
在这里插入图片描述

串口指令0x03测试效果如下:
在这里插入图片描述

串口指令0x04测试效果如下:
在这里插入图片描述

串口指令0x05测试效果如下:
在这里插入图片描述

串口指令0x06测试效果如下:
在这里插入图片描述

STM32例程下载

STM32F401CCU6 SPI总线读写SD/MicroSD/TF卡例程下载

–End–

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1510162.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

中兴服务器R6900 G5实力领先,有效助力大模型训练

日前&#xff0c;中兴通讯推出专为大规模模型训练而设计的旗舰GPU服务器—R6900 G5。据悉&#xff0c;该中兴服务器具备卓越的计算性能、高速网络通信能力以及创新的能效表现&#xff0c;有望为人工智能和深度学习等领域带来全新的突破。 R6900 G5搭载了中兴通讯最新一代的英特…

开源的java视频处理库介绍

本文将为您详细讲解 Java 开源的视频处理库&#xff0c;以及它们的特点、区别和应用场景。Java 社区提供了多种视频处理库&#xff0c;这些库可以帮助您在 Java 应用程序中实现视频的录制、编辑、转换和播放等功能。 1. JCodec 特点 - 基于 Java 的视频编解码库。 - 支…

嵌入式C语言(八)

继续来看看新的属性&#xff1a;weak 这个符号知道是弱&#xff0c;但是这个是干嘛的呢&#xff1f;我们先来学习一下强符号和弱符号 强符号和弱符号 GNU C通过weak属性声明&#xff0c;**可以将一个强符号转换为弱符号。**使用方法如下。 void __attribute__((weak)) func(…

【OpenGL手册15】 多光源

目录 一、说明二、定向光三、点光源四、合并结果练习 一、说明 我们在前面的教程中已经学习了许多关于OpenGL中光照的知识&#xff0c;其中包括冯氏着色(Phong Shading)、材质(Material)、光照贴图(Lighting Map)以及不同种类的投光物(Light Caster)。在这一节中&#xff0c;我…

回收站删除的文件怎么恢复?这3个方法可行!

“求助&#xff01;回收站删除的文件还有没有机会恢复呀&#xff1f;我不小心将回收站清空了&#xff0c;但是有一些很重要的文件还在里面&#xff0c;应该怎么恢复它们啊&#xff01;” 在使用电脑的过程中&#xff0c;我们难免会遇到误删文件的情况。而当文件被删除并清空回收…

c++: 引用能否替代指针? 详解引用与指针的区别.

文章目录 前言1. 引用和指针的最大区别:引用不能改变指向2. 引用和指针在底层上面是一样的3. 引用和指针在sizeof面前大小不同4. 有多级指针,没有多级引用5.引用是引用的实体,指针会向后偏移同一个类型的大小 总结 前言 新来的小伙伴如果不知道引用是什么?可以看我的上一篇文…

Kubernetes | 起源 | 组件详解

起源 起源&#xff1a; Kubernetes&#xff08;常简称为K8s&#xff09;起源于Google内部的Borg项目&#xff0c;是一个开源的容器编排引擎&#xff0c;于2014年首次对外发布。 Google Borg Google Borg 是 Google 内部开发和使用的大规模集群管理系统&#xff0c;用于管理和运…

锐捷 EWEB auth 远程命令执行漏洞复现

一、漏洞信息 漏洞名称:锐捷 EWEB auth 远程命令执行漏洞 漏洞类别:远程代码执行 风险等级:高危 二、漏洞描述 锐捷睿易是锐捷网络针对商业市场的子品牌。拥有易网络、交换机、路由器、无线、安全、云服务六大产品线,解决方案涵盖商贸零售、酒店、KTV、网吧、监控安防…

GPT出现Too many requests in 1 hour. Try again later.

换节点 这个就不用多说了&#xff0c;你都可以上GPT帐号了&#xff0c;哈…… 清除cooki 然后退出账号&#xff0c;重新登录即可

KBL610-ASEMI开关电源专用KBL610

编辑&#xff1a;ll KBL610-ASEMI开关电源专用KBL610 型号&#xff1a;KBL610 品牌&#xff1a;ASEMI 封装&#xff1a;KBL-4 最大重复峰值反向电压&#xff1a;1000V 最大正向平均整流电流(Vdss)&#xff1a;6A 功率(Pd)&#xff1a;中小功率 芯片个数&#xff1a;4 …

encoding和embedding的区别

本文作者&#xff1a; slience_me 文章目录 encoding和embedding的区别EmbeddingEncoding总结 encoding和embedding的区别 “Embedding” 和 “Encoding” 是两个在计算机科学和机器学习领域中常用的术语&#xff0c;它们虽然有些相似&#xff0c;但指代的概念和用途有所不同。…

国创证券|lpr下调25个基点是多少?lpr下调对股市债市有什么影响?

lpr是借款市场报价利率&#xff0c;其间lpr下调25个基点是指lpr利率下降0.25%&#xff0c;比方&#xff0c;下调之前五年期以上的lpr为4.2%&#xff0c;下调25个基点之后&#xff0c;变为3.95%。 lpr下调对股市债市存在以下影响&#xff1a; 1、券商股 借款利率下降&#xf…

发现创作灵感的聚集地:乐歌M9G与M9S升降办公台对比解析

在现代工作环境中&#xff0c;全天待在桌前的时间已经超过了其他的项目&#xff0c;尤其是以编程开发、动画设计为主的互联网从业者&#xff0c;工作量的增加&#xff0c;会导致颈椎和腰椎僵硬&#xff0c;根据人工工程学提出的人与环境之间的协调关系&#xff0c;对于上班一族…

ssm蛋糕甜品商城系统(程序+文档+数据库)

** &#x1f345;点赞收藏关注 → 私信领取本源代码、数据库&#x1f345; 本人在Java毕业设计领域有多年的经验&#xff0c;陆续会更新更多优质的Java实战项目&#xff0c;希望你能有所收获&#xff0c;少走一些弯路。&#x1f345;关注我不迷路&#x1f345;** 一、研究背景…

场的概念---数量场(标量场)和矢量场介绍理解

目录 一、场的概念 二、场的分类 三、数量场&#xff08;标量场&#xff09;的等值面 四、矢量场中的矢量线 矢量线方程推导&#xff1a; 一、场的概念 场在数学上是指一个向量到另一个向量或数的映射。场指物体在空间中的分布情况。场是用空间位置函数来表征的。在物理学…

C#集合和数据结构,随笔记录没空排版,,,

C#集合和数据结构 System.Collections命名空间包含接口和类&#xff0c;这些接口和类定义各种对象&#xff08;如列表/链表、位数组、哈希表、队列和堆栈&#xff09;的集合 System.Collections.Generic命名空间&#xff1a; 所有集合都直接或间接基于ICollection接口 列表类集…

网络通信另个角度的认识(进程间通信),端口号(为什么要有,和pid的关系,如何封装,和进程的定位原理+对应关系)客户端如何拿到服务端的port

目录 另一个角度认识网络通信 端口号 引入 -- 为什么要有端口号 问题 解决 端口号和pid 举例 介绍 分类 知名端口 注册端口 动态端口 客户端如何知道服务端的端口号 封装端口号 定位原理 进程和端口号的对应关系 数据如何被上层进程读到 另一个角度认识网络…

抽样算法——【数据科学与工程算法基础】

一、前言 这是课程的第二章节——抽样算法&#xff0c;主要分为三类。 详情可参考&#xff1a; 数据科学的算法基础——学习记录跳转中心 二、正篇 1.系统抽样 课本只介绍了最简单的——等距抽样。 直线等距抽样&#xff08;Nn*k&#xff09;&#xff1a;即总体个数可以被抽…

webgl instance 绘制

webgl instance 绘制 效果: key1: 创建实例缓存 function createMesh() {for (let i 0; i < NUM_CUBE; i) {const angle i * 2 * Math.PI / NUM_CUBE;const x Math.sin(angle) * RADIUS;const y 0;const z Math.cos(angle) * RADIUS;cubes[i] {scale: new THREE.V…

从零开始实现ORB_SLAM2编译与运行

文章目录 前言一、前期准备二、库安装1.engin库安装方法1&#xff1a;apt安装方法2&#xff1a;源码安装 2.Pangolin库安装3.openCV源码安装 三、build编译四、测试五、ROS安装六、build-ros编译七、测试总结 前言 ORB_SLAM2作为一种优秀的开源VSLAM解决方案&#xff0c;以其高…