elasticsearch篇

news2024/11/17 2:29:45

1.初识elasticsearch

1.1.了解ES

1.1.1.elasticsearch的作用

elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容

例如:

在电商网站搜索商品

在百度搜索答案

在打车软件搜索附近的车

1.1.2.ELK技术栈

elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:

而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。

1.1.3.elasticsearch和lucene

elasticsearch底层是基于lucene来实现的。

Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址:Apache Lucene - Welcome to Apache Lucene 。

elasticsearch的发展历史:

  • 2004年Shay Banon基于Lucene开发了Compass

  • 2010年Shay Banon 重写了Compass,取名为Elasticsearch。

1.1.4.为什么不是其他搜索技术?

目前比较知名的搜索引擎技术排名:

虽然在早期,Apache Solr是最主要的搜索引擎技术,但随着发展elasticsearch已经渐渐超越了Solr,独占鳌头:

1.1.5.总结

什么是elasticsearch?

  • 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能

什么是elastic stack(ELK)?

  • 是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch

什么是Lucene?

  • 是Apache的开源搜索引擎类库,提供了搜索引擎的核心API

1.2.倒排索引

倒排索引的概念是基于MySQL这样的正向索引而言的。

1.2.1.正向索引

那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:

如果是根据id查询,那么直接走索引,查询速度非常快。

但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:

1)用户搜索数据,条件是title符合"%手机%"

2)逐行获取数据,比如id为1的数据

3)判断数据中的title是否符合用户搜索条件

4)如果符合则放入结果集,不符合则丢弃。回到步骤1

逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。

1.2.2.倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息

  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条

  • 创建表,每行数据包括词条、词条所在文档id、位置等信息

  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

如图:

倒排索引的搜索流程如下(以搜索"华为手机"为例):

1)用户输入条件"华为手机"进行搜索。

2)对用户输入内容分词,得到词条:华为手机

3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。

4)拿着文档id到正向索引中查找具体文档。

如图:

虽然要先查询倒排索引,再查询正向索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。

1.2.3.正向和倒排

那么为什么一个叫做正向索引,一个叫做倒排索引呢?

  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程

  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程

是不是恰好反过来了?

那么两者方式的优缺点是什么呢?

正向索引

  • 优点:

    • 可以给多个字段创建索引

    • 根据索引字段搜索、排序速度非常快

  • 缺点:

    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。

倒排索引

  • 优点:

    • 根据词条搜索、模糊搜索时,速度非常快

  • 缺点:

    • 只能给词条创建索引,而不是字段

    • 无法根据字段做排序

1.3.es的一些概念

elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。

1.3.1.文档和字段

elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:

而Json文档中往往包含很多的字段(Field),类似于数据库中的列。

1.3.2.索引和映射

索引(Index),就是相同类型的文档的集合。

例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;

  • 所有商品的文档,可以组织在一起,称为商品的索引;

  • 所有订单的文档,可以组织在一起,称为订单的索引;

因此,我们可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

1.3.3.mysql与elasticsearch

我们统一的把mysql与elasticsearch的概念做一下对比:

MySQLElasticsearch说明
TableIndex索引(index),就是文档的集合,类似数据库的表(table)
RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
ColumnField字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQLDSLDSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

是不是说,我们学习了elasticsearch就不再需要mysql了呢?

并不是如此,两者各自有自己的擅长支出:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性

  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现

  • 对查询性能要求较高的搜索需求,使用elasticsearch实现

  • 两者再基于某种方式,实现数据的同步,保证一致性

1.4.安装es、kibana

1.4.1.安装

参考如下:

1.4.1.1 部署单节点es

先创建网络:

因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:

docker network create es-net

再加载镜像

这里我们采用elasticsearch的7.12.1版本的镜像

同理还有kibana的tar包也需要这样做。

然后docker命令,部署单点es:

docker run -d \
	--name es \
    -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
    -e "discovery.type=single-node" \
    -v es-data:/usr/share/elasticsearch/data \
    -v es-plugins:/usr/share/elasticsearch/plugins \
    --privileged \
    --network es-net \
    -p 9200:9200 \
    -p 9300:9300 \
elasticsearch:7.12.1

命令解释:

  • -e "cluster.name=es-docker-cluster":设置集群名称

  • -e "http.host=0.0.0.0":监听的地址,可以外网访问

  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小

  • -e "discovery.type=single-node":非集群模式

  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录

  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录

  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录

  • --privileged:授予逻辑卷访问权

  • --network es-net :加入一个名为es-net的网络中

  • -p 9200:9200:端口映射配置

在浏览器中输入:http://192.168.71.132:9200 即可看到elasticsearch的响应结果:

1.4.1.2. 部署kibana

kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。

运行docker命令,部署kibana

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601  \
kibana:7.12.1
  • --network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中

  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch

  • -p 5601:5601:端口映射配置

kibana启动一般比较慢,需要多等待一会,可以通过命令:

docker logs -f kibana

查看运行日志,当查看到下面的日志,说明成功:

此时,在浏览器输入地址访问:http://192.168.71.132:5601 即可看到结果:

kibana中提供了一个DevTools界面:

这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。

1.4.2. 分词器

参考如下方式安装分词器:

离线安装ik插件(较快)

1)查看数据卷目录

安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:

x docker volume inspect es-plugins

显示结果:

[
    {
        "CreatedAt": "2024-03-09T15:06:34+08:00",
        "Driver": "local",
        "Labels": null,
        "Mountpoint": "/var/lib/docker/volumes/es-plugins/_data",
        "Name": "es-plugins",
        "Options": null,
        "Scope": "local"
    }
]

说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data这个目录中。

2)解压缩分词器安装包

下面我们需要把资料中的ik分词器解压缩,重命名为ik

3)上传到es容器的插件数据卷中

也就是/var/lib/docker/volumes/es-plugins/_data

4)重启容器

# 4、重启容器
docker restart es

5)测试:

IK分词器包含两种模式:

  • ik_smart:最少切分

  • ik_max_word:最细切分

GET /_analyze
{
    "text": "王虎说学习java实在是太有趣了",
    "analyzer": "ik_smart"
}

结果:

{
  "tokens" : [
    {
      "token" : "王",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "CN_CHAR",
      "position" : 0
    },
    {
      "token" : "虎",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "CN_CHAR",
      "position" : 1
    },
    {
      "token" : "说",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "CN_CHAR",
      "position" : 2
    },
    {
      "token" : "学习",
      "start_offset" : 3,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 3
    },
    {
      "token" : "java",
      "start_offset" : 5,
      "end_offset" : 9,
      "type" : "ENGLISH",
      "position" : 4
    },
    {
      "token" : "实在是",
      "start_offset" : 9,
      "end_offset" : 12,
      "type" : "CN_WORD",
      "position" : 5
    },
    {
      "token" : "太",
      "start_offset" : 12,
      "end_offset" : 13,
      "type" : "CN_CHAR",
      "position" : 6
    },
    {
      "token" : "有趣",
      "start_offset" : 13,
      "end_offset" : 15,
      "type" : "CN_WORD",
      "position" : 7
    }
  ]
}

3.3 扩展词词典,停用词词典

随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给”,“姬霓太美” 等。

所以我们的词汇也需要不断的更新,IK分词器提供了扩展和停用词汇的功能。

1)打开IK分词器config目录:

2)在IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典-->
        <entry key="ext_dict">ext.dic</entry>
        <!--用户可以在这里配置自己的扩展停止词字典  *** 添加停用词词典-->
        <entry key="ext_stopwords">stopword.dic</entry>
</properties>

3.1)新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改

黑虎阿福
奥利给
姬霓太美

3.2)打开stopword.dic,可以看到它里面已经有一些禁用词了,我们再加几个:

 4)重启elasticsearch

docker restart es

# 查看 日志
docker logs -f elasticsearch

5)测试效果:

GET /_analyze
{
    "text": "奥利给,黑虎阿福说姬霓太美学习java实在是太有趣了jzm",
    "analyzer": "ik_smart"
}
{
  "tokens" : [
    {
      "token" : "奥利给",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "黑虎阿福",
      "start_offset" : 4,
      "end_offset" : 8,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "说",
      "start_offset" : 8,
      "end_offset" : 9,
      "type" : "CN_CHAR",
      "position" : 2
    },
    {
      "token" : "姬霓太美",
      "start_offset" : 9,
      "end_offset" : 13,
      "type" : "CN_WORD",
      "position" : 3
    },
    {
      "token" : "学习",
      "start_offset" : 13,
      "end_offset" : 15,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "java",
      "start_offset" : 15,
      "end_offset" : 19,
      "type" : "ENGLISH",
      "position" : 5
    },
    {
      "token" : "实在是",
      "start_offset" : 19,
      "end_offset" : 22,
      "type" : "CN_WORD",
      "position" : 6
    },
    {
      "token" : "太",
      "start_offset" : 22,
      "end_offset" : 23,
      "type" : "CN_CHAR",
      "position" : 7
    },
    {
      "token" : "有趣",
      "start_offset" : 23,
      "end_offset" : 25,
      "type" : "CN_WORD",
      "position" : 8
    }
  ]
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

2.索引库操作

索引库就类似数据库表,mapping映射就类似表的结构。

我们要向es中存储数据,必须先创建“库”和“表”。

2.1.mapping映射属性

mapping是对索引库中文档的约束,常见的mapping属性包括:

  • type:字段数据类型,常见的简单类型有:

    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)

    • 数值:long、integer、short、byte、double、float、

    • 布尔:boolean

    • 日期:date

    • 对象:object

  • index:是否创建索引,默认为true

  • analyzer:使用哪种分词器

  • properties:该字段的子字段

例如下面的json文档:

{
    "age": 21,
    "weight": 52.1,
    "isMarried": false,
    "info": "黑马程序员Java讲师",
    "email": "zy@itcast.cn",
    "score": [99.1, 99.5, 98.9],
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

对应的每个字段映射(mapping):

  • age:类型为 integer;参与搜索,因此需要index为true;无需分词器

  • weight:类型为float;参与搜索,因此需要index为true;无需分词器

  • isMarried:类型为boolean;参与搜索,因此需要index为true;无需分词器

  • info:类型为字符串,需要分词,因此是text;参与搜索,因此需要index为true;分词器可以用ik_smart

  • email:类型为字符串,但是不需要分词,因此是keyword;不参与搜索,因此需要index为false;无需分词器

  • score:虽然是数组,但是我们只看元素的类型,类型为float;参与搜索,因此需要index为true;无需分词器

  • name:类型为object,需要定义多个子属性

    • name.firstName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器

    • name.lastName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器

2.2.索引库的CRUD

这里我们统一使用Kibana编写DSL的方式来演示。

# 创建索引库
PUT /heima
{
  "mappings": {
    "properties": {
      "info": {
        "type": "text",
        "analyzer": "ik_smart"
      },
      "email": {
        "type": "keyword",
        "index": false
      },
      "name": {
        "type": "object",
        "properties": {
          "firstName": {
            "type": "keyword"
          },
          "lastName": {
            "type": "keyword"
          }
        }
      }
    }
  }
}


# 查询
GET /heima

#修改索引库,添加新字段
PUT /heima/_mapping
{
  "properties": {
    "age": {
      "type": "integer"
    }
  }
}

#删除
DELETE /heima

3.文档操作

# 插入一个文档
POST /heima/_doc/1
{
  "info": "黑马程序员Java讲师",
  "email": "zy@itcast.cn",
  "name": {
    "firstName" : "云",
    "lastName" : "赵"
  }
}

# 查询文档
GET /heima/_doc/1

# 删除文档
DELETE /heima/_doc/1



#全量修改文档
PUT /heima/_doc/1
{
  "info": "黑马程序员Java讲师",
  "email": "ZhaoYun@itcast.cn",
  "name": {
    "firstName" : "云",
    "lastName" : "赵"
  }
}


# 局部修改文档字段
POST /heima/_update/1
{
  "doc": {
    "email": "ZYun@itcast.cn"
  }
}

修改有两种方式:

  • 全量修改:直接覆盖原来的文档

  • 增量修改:修改文档中的部分字段

全量修改是覆盖原来的文档,其本质是:

  • 根据指定的id删除文档

  • 新增一个相同id的文档

注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。

PUT /{索引库名}/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    // ... 略
}

增量修改是只修改指定id匹配的文档中的部分字段。

语法:

POST /{索引库名}/_update/文档id
{
    "doc": {
         "字段名": "新的值",
    }
}

    总结:

        文档操作有哪些?

  • 创建文档:POST /{索引库名}/_doc/文档id { json文档 }

  • 查询文档:GET /{索引库名}/_doc/文档id

  • 删除文档:DELETE /{索引库名}/_doc/文档id

  • 修改文档:

    • 全量修改:PUT /{索引库名}/_doc/文档id { json文档 }

    • 增量修改:POST /{索引库名}/_update/文档id { "doc": {字段}}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1506596.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

鸿蒙Harmony应用开发—ArkTS声明式开发(通用属性:动态属性设置)

动态设置组件的属性&#xff0c;支持开发者在属性设置时使用if/else语法&#xff0c;且根据需要使用多态样式设置属性。 说明&#xff1a; 从API Version 11开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 attributeModifier attributeMo…

AI Vtuber一款聚合了多种大模型技术的虚拟主播

大家好&#xff0c;笔者荒生&#xff0c;今天调研了一款比较不错的开源项目AI-Vtuber&#xff0c;和大家一起分享。 AI-Vtuber是一款数字人虚拟直播软件&#xff0c;聚合了多种多种市面主流大模型技术&#xff0c;可谓牛得一逼。包括&#xff1a;支持ChatGPT、Claude、ChatGLM…

C语言学习--练习4(二维数组)

目录 1.统计有序数组中的负数 2.矩阵对角线元素和 3.最富有客户的资产总量 4.托普利兹矩阵 5.矩阵中的幸运数 6.二进制矩阵中的特殊位置 7.岛屿的周长 1.统计有序数组中的负数 //直接遍历二维数组即可 int countNegatives(int** grid, int gridSize, int* gridColSize) …

20240310-2-数组(Array)

数组&#xff08;Array&#xff09; 面试中最常见的就是围绕数组进行出题&#xff0c;主要原则数组可以随机读取&#xff0c;一般遇到数组相关的题目&#xff0c;都不是直观看到的那样。第一步暴力解法&#xff0c;第二步是否可以排序&#xff0c;是否可以二分&#xff0c;是否…

【Linux】线程封装_互斥

欢迎来到Cefler的博客&#x1f601; &#x1f54c;博客主页&#xff1a;折纸花满衣 &#x1f3e0;个人专栏&#xff1a;题目解析 &#x1f30e;推荐文章&#xff1a;【LeetCode】winter vacation training 目录 &#x1f449;&#x1f3fb;线程封装Thread.cpp &#x1f449;&am…

给 spyter/all-spark-notebook 添加scala支持

spyter/all-spark-notebook默认没有安装scala notebook&#xff0c;需要手动添加。 你可以创建一个新的 Dockerfile&#xff0c;在其中添加你需要的配置和组件。以下是一个简单的例子&#xff1a; FROM jupyter/all-spark-notebook:x86_64-ubuntu-22.04 #冒号后可以是latest&a…

Masked Generative Distillation(MGD)2022年ECCV

Masked Generative Distillation&#xff08;MGD&#xff09;2022年ECCV 摘要 **目前的蒸馏算法通常通过模仿老师的输出来提高学生的表现。本文表明&#xff0c;教师还可以通过引导学生特征恢复来提高学生的代表性。从这个角度来看&#xff0c;我们提出的掩模生成蒸馏&#x…

扩展学习|系统理解数字经济

文献来源&#xff1a;[1]肖静华,胡杨颂,吴瑶.成长品&#xff1a;数据驱动的企业与用户互动创新案例研究[J].管理世界,2020,36(03):183-205.DOI:10.19744/j.cnki.11-1235/f.2020.0041. [2]陈晓红,李杨扬,宋丽洁等.数字经济理论体系与研究展望[J].管理世界,2022,38(02):208-22413…

微信小程序跳转到其他小程序

有两种方式&#xff0c;如下&#xff1a; 一、appid跳转 wx.navigateToMiniProgram({appId: 目标小程序appid,path: 目标小程序页面路径,//不配的话默认是首页//develop开发版&#xff1b;trial体验版&#xff1b;release正式版envVersion: release, success(res) {// 打开成功…

yudao-cloud 学习笔记

前端代码 浏览器打开 https://cloud.iocoder.cn/intro/ F12 执行代码 var aaa $(".sidebar-group-items").find("a"); var ll[]; var tt[]; for(var i0;i<aaa.length;i ){ ll.push("https://doc.iocoder.cn" $(aaa[i]).attr("href&quo…

电动车窗开关中MOS管的应用解析

随着科技的不断发展&#xff0c;电动车窗系统已经成为现代汽车中不可或缺的一部分。而MOS&#xff08;金属氧化物半导体&#xff09;管的应用&#xff0c;为电动车窗开关注入了新的活力&#xff0c;极大地提高了其使用寿命和安全性。 一、MOS的优越性能 MOS管以其卓越的开关…

记录西门子:IO隔离SCL编程

在PLC变量中创建IO输入输出 在PLC类型中创建输入和输出&#xff0c;并将PLC变量的输入输出名称复制过来 创建一个FC块或者FB块 创建一个DB块 MAIN主程序中&#xff1a;

【JavaEE初阶系列】——计算机是如何工作的

目录 &#x1f388;冯诺依曼体系 ❗外存和内存的概念 ❗CPU中央处理器—人类当今科技领域巅峰之作之一 &#x1f6a9;如何衡量cpu &#x1f6a9;指令&#xff08;Instruction&#xff09; &#x1f388;操作系统&#xff08;Operating System&#xff09; &#x1f388;…

超越基础:提升你的数据采集策略与IP代理的高级应用

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …

软件测试 需求

文章目录 1. 需求1.1 什么是需求1.2 为什么要有需求1.3 测试人员眼中的需求1.4 如何深入理解需求 2. 测试用例的概念2.1 什么是测试用例2.2 为什么要有测试用例 3. 软件错误&#xff08;BUG&#xff09;的概念4. 开发模型和测试模型4.1 软件的生命周期4.2 瀑布模型&#xff08;…

[SAP] ABAP注释快捷键修改

在使用ABAP编辑器的时候&#xff0c;原有的添加代码注释和取消代码注释的快捷键未生效&#xff0c;这时我们可以考虑对注释快捷键进行修改 在事务码SE38(ABAP编辑器)屏幕右下角&#xff0c;点击【Options选项】图标 在【键盘】|【命令】输入栏中输入"comment"关键字…

mac上更改vscode快捷键

以移动当前行代码为例 mac上的vscode&#xff0c;默认移动当前行代码的快捷键是⌥↑即option↑按键 现在我想改成command↑ 步骤如下 1.打开vscode-code-首选项-键盘快捷键 2.打开快捷键列表 3.输入move line&#xff0c;找到要改动的这个快捷键 当前行-右键-更改键绑定&…

LTspice(14) Noise仿真

LTspice(14) Noise仿真 好久没有更新LTspice的教程了&#xff0c;大家想了没&#xff1f; 截止目前LTspice已经更新到24.0.9。界面发生了一些变化&#xff0c;但主要功能并不受影响&#xff0c;新的版本改了UI&#xff0c;找东西更加方便了&#xff0c;界面如下图1所示。 图1…

JavaEE+springboot教学仪器设备管理系统o9b00-springmvc

本文旨在设计一款基于Java技术的教学仪器设备销售网站&#xff0c;以提高网站性能、功能完善、用户体验等方面的优势&#xff0c;解决现有教学仪器设备销售网站的问题&#xff0c;并为广大教育工作者和学生提供便捷的教学仪器设备销售渠道。本文首先介绍了Java技术的相关基础知…

checking file system on C

1、win7系统 开机检查C盘&#xff0c;虽然可以ESC取消检查&#xff0c;每次操作很麻烦&#xff0c;且没有意思 2、注册表清空BootExecute数值数据 1&#xff09;打开注册表 WinR &#xff08;快捷键&#xff09;输入“regedit”&#xff0c;回车 2&#xff09;位置HKEY_LOCAL…