ElasticSearch学习篇10_Lucene数据存储之BKD动态磁盘树

news2025/1/19 14:30:20

前言

基础的数据结构如二叉树衍生的的平衡二叉搜索树通过左旋右旋调整树的平衡维护数据,靠着二分算法能满足一维度数据的logN时间复杂度的近似搜索。对于大规模多维度数据近似搜索,Lucene采用一种BKD结构,该结构能很好的空间利用率和性能。
本片博客主要学习常见的多维数据搜索数据结构以及BKD结构搜索过程以及原理。

一、多维数据空间搜索结构

BKD-Tree是基于KD-B-Tree改进而来,而KD-B-Tree又是KD-Tree和B+Tree的结合体,KD-Tree又是我们最熟悉的二叉查找树BST(Binary Search Tree)在多维数据的自然扩展,它是BSP(Binary Space Partitioning)的一种。B+Tree又是对B-Tree的扩展。以下对这几种树的特点简要描述。

KD-Tree

kd是K-Dimensional的所写,k值表示维度,KD-Tree表示能处理K维数据的树结构,当K为1的时候,就转化为了BST结构

维基百科:在计算机科学里,k-d树(k-维树的缩写)是在k维欧几里德空间组织点的数据结构。k-d树可以使用在多种应用场合,如多维键值搜索(例:范围搜寻及最邻近搜索)。k-d树是空间二分算法(binary space partitioning)的一种特殊情况。

首先看BSP,Binary space partitioning(BSP)是一种使用超平面递归划分空间到凸集的一种方法。使用该方法划分空间可以得到表示空间中对象的一个树形数据结构。这个树形数据结构被我们叫做BSP树。
image.png
可以分为轴对齐、多边形对齐BSP,这两种方式就是选择超平面的方式不一样,已轴对齐BSP通过构建过程简单理解,就是选择一个超平面,这个超平面是跟选取的轴垂直的一个平面,通过超平面将空间分为两个子空间,然后递归划分子空间。
空间划分思想可以转化为坐标点划分,一般可以应用在游戏中如物体定位等,比如二维空间的四叉树和三维空间的八叉树都是参考BSP划分算法。

  • BSP树:BSP树使用平面进行递归的二分划分,将空间划分为两个子空间。每个节点要么是叶子节点(包含实际对象),要么是内部节点(包含一个分割平面)。分割平面通常由空间中的一条直线表示。
  • 四叉树:四叉树将空间划分为四个象限,每个象限都是父节点的子节点。每个节点要么是叶子节点(包含实际对象),要么是内部节点(包含四个子节点)。

四叉树又分为点四叉树和边四叉树,以边四叉树为例,具体的实现源码参考:空间搜索优化算法之——四叉树 - 掘金

k-d tree是一种特殊的BSP树,它的特点有:

  • 每一层都是一种划分维度
  • 每个节点代表垂直于当前维度的超平面,将空间划分为两部分
  • k维空间,按树的每一层循环选取,当前节点为i维,下一层节点为(i+1)%k维

KD 树(KD-tree)和 BSP 树(Binary Space Partitioning tree)都是用于空间划分的数据结构,但它们有一些关键的区别,这也是为什么 KD 树被认为是 BSP 树的一种特殊情况的原因之一。

  1. 维度划分方式不同
    • KD 树:KD 树是针对 k 维空间的树形数据结构,它在每个节点上通过轮流选择一个维度来划分空间,例如在二维空间中,它可能在 x 轴上进行一次划分,在 y 轴上进行下一次划分,以此类推。因此,KD 树在每一层都会选择一个维度进行划分。
    • BSP 树:BSP 树是一种二叉树,每个节点都代表一个超平面(hyperplane),用于将空间划分为两个子空间。BSP 树的划分方式不一定是轮流选择维度,而是根据一些准则(如最佳平面)选择划分的超平面。
  2. 节点类型不同
    • KD 树:KD 树的节点可以是叶节点,也可以是非叶节点。非叶节点表示一个划分超平面,叶节点表示一个数据点。
    • BSP 树:BSP 树的每个节点都是一个划分超平面,它没有叶节点来表示数据点。
  3. 适用场景不同
    • KD 树:KD 树主要用于 k 维空间中的最近邻搜索等问题,由于它在每个节点上都选择一个维度进行划分,因此在高维空间中可能会出现维度灾难(curse of dimensionality)的问题。
    • BSP 树:BSP 树更通用,可以用于任何维度的空间划分,常用于图形学中的空间分区和碰撞检测等问题。

因此,虽然 KD 树和 BSP 树都是空间划分的数据结构,但由于它们的设计和应用场景有所不同,KD 树被认为是 BSP 树的一种特殊情况。

下面是一个2维度的KD-tree,类似BST

先KD-Tree适宜处理多维数据,查询效率较高。不难知道一个静态多维数据集合建成KD-Tree后查询时间复杂度是O(lgN)。所有节点都存储了数据本身,导致索引数据的内存利用不够紧凑,相应地数据磁盘存储的空间利用不够充分。此外KD-Tree不适宜处理海量数据的动态更新。原因和B树B+树不适宜处理多维数据的动态更新的分析差不多,因为KD-Tree的分层划分是依维度依次轮替进行的,动态更新后调整某个中间节点时,变更的当前维度也同样需要调整其全部子孙节点中的当前维度值,导致对树节点的访问和操作增多,操作耗时增大。可见,KD-Tree更适宜处理的是静态场景的多维海量数据的查询操作。

KD-B-Tree

KD-B-Tree(K-Dimension-Balanced-Tree)顾名思义,结合了KD-Tree和B+Tree。它主要解决了KD-Tree的二叉树形式树高较高,对磁盘IO不够友好的缺点,引入了B+树的多叉树形式,不仅降低了树高,而且全部数据都存储在叶子节点,增加了磁盘空间存储利用率。一个KD-B-Tree结构的示意图如下。它同样不适宜多维数据的动态更新场景,原因同KD-Tree一样。

BKD-Tree

BKD-Tree(或BK-D-Tree,全称是Block-K-Dimension-Tree )

二、BKD-Tree原理

在本文中,我们提出了一种新的索引结构,称为Bkd-tree,用于索引大型多维点数据集。 Bkdtree 是一种基于 kd-tree 的 I/O 高效动态数据结构。我们提出了一项广泛的实验研究的结果,表明与之前将 kd-tree 的外部版本动态化的尝试不同,Bkd-tree 保持了其高空间利用率和出色的性能。查询和更新性能与对其执行的更新数量无关。

// TODO

参考

  • kd-tree-维基百科
  • 论文 Bkd-Tree: A Dynamic Scalable kd-Tree
  • K-D树、K-D-B树、B-K-D树
  • 空间索引技术在58搜索中的落地实践 – BKD技术原理深入剖析_ITPUB博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1506176.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux C/C++下使用Lex/Yacc构建实现DBMS(Minisql)

DBMS(数据库管理系统)是一种用于管理和组织数据库的软件系统。它的重要性在于提供了一种有效地存储、管理和访问大量数据的方式。本文将深入探讨如何使用C语言、Lex(词法分析器生成器)和Yacc(语法分析器生成器&#xf…

【MySQL篇】 MySQL基础学习

文章目录 前言基础数据类型DDL数据库操作查询数据库创建数据库删除数据库使用数据库 DDL表操作创建表查询表修改表删除 DML-增删改添加数据更改数据删除数据 DQL-查询基础查询条件查询聚合函数分组查询排序查询分页查询编写顺序 DML-用户及权限用户管理权限控制 函数字符串函数…

【刷题】Leetcode 415 字符串相加 和 34 字符串相乘

刷题 Leetcode 415 字符串相加题目描述 思路一(模拟大法版!!!)Leetcode 34 字符串相乘题目描述 思路一(模拟大法版)Thanks♪(・ω・)ノ谢谢阅读!&…

第三百九十四回

文章目录 1. 概念介绍2. 生命周期及其方法2.1 生命周期2.2 回调方法2.3 使用方法 3. 示例代码4. 内容总结 我们在上一章回中介绍了"显示Snackbar的另外一种方法"相关的内容,本章回中将介绍如何监听组件的生命周期.闲话休提,让我们一起Talk Flu…

Linux安装MeterSphere并结合内网穿透实现公网远程访问本地服务

文章目录 前言1. 安装MeterSphere2. 本地访问MeterSphere3. 安装 cpolar内网穿透软件4. 配置MeterSphere公网访问地址5. 公网远程访问MeterSphere6. 固定MeterSphere公网地址 前言 MeterSphere 是一站式开源持续测试平台, 涵盖测试跟踪、接口测试、UI 测试和性能测试等功能&am…

机器人大赛有什么用?

机器人大赛在多个方面都具有显著的价值。首先,机器人大赛可以为学生提供一个实践与创新的机会,有助于培养学生的动手实践能力和创新思维。在比赛过程中,学生需要运用所学的知识和技能,设计、制作和调试机器人,这不仅可…

注意!!墙裂推荐几个好用的实用小工具!一定会用到的!

前言 在开发的世界里,面对各种挑战和问题时,拥有一套合适的工具箱至关重要。这不仅能提升我们的工作效率,还能让复杂的任务变得简单,甚至在解决棘手问题的同时,还能让我们的心情略微舒畅。众所周知,有用的…

备战蓝桥杯Day25 - 二叉搜索树

一、基本概念 二叉搜索树(Binary Search Tree),又称为二叉查找树或二叉排序树,是一种具有特定性质的二叉树。 定义:二叉搜索树可以是一棵空树,也可以是具有以下特性的非空二叉树: 若其左子树不…

基于51单片机的定时器时钟设计[proteus仿真]

基于51单片机的定时器时钟设计[proteus仿真] 时钟设计检测系统这个题目算是课程设计和毕业设计中常见的题目了,本期是一个基于51单片机的定时器时钟设计 需要的源文件和程序的小伙伴可以关注公众号【阿目分享嵌入式】,赞赏任意文章 2¥&…

【MySql学习之路】window环境下MySql安装和安装过程中出现的问题

environment:windows software:mysql 本文主要分享mysql关系型数据库在干净的环境下,第一次安装以及在安装过程中出现的常见问题和解决方法。目前官网给出的安装包有两种格式,一个是msi格式,一个是zip格式的。很多人下了zip格式的解压发现没有setup.exe,面对一堆文件无从…

【面试题】-02

素数之积 题目描述 RSA加密算法在网络安全世界中无处不在,它利用了极大整数因数分解的困难度,数据越大,安全系数越高,给定一个32位正整数,请对其进行因数分解,找出是哪两个素数的乘积。 输入描述 一个正整…

ORACLE Linux(OEL) - Primavera P6EPPM 安装及分享

引言 继上一期发布的CentOS版环境发布之后,近日我制作了基于ORACLE Linux的P6虚拟机环境,同样里面包含了全套P6 最新版应用服务 此虚拟机仅用于演示、培训和测试目的。如您在生产环境中使用此虚拟机,请先与Oracle Primavera销售代表取得联系…

[C/C++]string类常用接口介绍及模拟实现string类

一:Cstring类的由来 在C语言中,字符串是以\0结尾的一些字符的集合,为了操作方便,C标准库中提供了一些str系列的库函数,但是这些库函数与字符串是分离开的,不太符合OOP的思想,而且底层空间需要用…

动态规划|【路径问题】|174.地下城游戏

题目 174. 地下城游戏 恶魔们抓住了公主并将她关在了地下城 dungeon 的 右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。 骑士的初始健康点数为一个正整数。如果他的健…

数字化转型导师坚鹏:科技金融政策、案例及营销创新

科技金融政策、案例及营销创新 课程背景: 很多银行存在以下问题: 不清楚科技金融有哪些利好的政策? 不知道科技金融有哪些成功的案例? 不知道科技金融如何进行营销创新? 课程特色: 以案例的方式解…

复制表

目录 复制表 将部门 30 的所有员工信息保存在 emp30 表中 将复杂查询结果创建为表 只将 emp 表的结构复制为 empnull 表 从入门到总裁:​​​​​​https://blog.csdn.net/weixin_67859959/article/details/135209645 复制表 严格来说,复制表不是复制操作&am…

[QT]自定义的QtabWidget

需求 最近有一个需求就是一个QTabWidget要求有四个tab页在左侧用于显示主页面&#xff0c;在右侧有一个关于按钮&#xff0c;点击后用于弹出窗口显示一些程序相关信息。主要是怎么实现右侧按钮 相关代码 #ifndef MYTABWIDGET_H #define MYTABWIDGET_H#include <QWidget&g…

UDP通信发送和接收 || UDP实现全双工通信

recvfrom ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags, struct sockaddr *src_addr, socklen_t *addrlen); 功能: 从套接字中接收数据 参数: sockfd:套接字文件描述符 buf:存放数据空间首地址 …

康奈尔开源近10万份审稿意见,未来论文发表或将由AI定夺

大语言模型&#xff08;LLMs&#xff09;的进步为自动化论文评审开辟了新途径&#xff0c;这些模型在学术反馈领域展现出巨大潜力。自动化评审的核心优势在于其能够精准指出论文草稿的不足之处&#xff0c;助力作者优化研究。尽管已有丰富的同行评审数据&#xff0c;但现有自动…

利用websocket +定时器简易的实现一个网络聊天室

其实原理非常简单,就是客户端用户通过websoket来连接websocket服务端。然后服务端,收集每个用户发出的消息, 进而将每条用户的消息通过广播的形式推送到每个连接到服务端的客户端。从而实现用户的实时聊天。 // TODO : 我主要是讲一下实现思路。并未完善其功能。 1.后端 依赖 …