[nlp入门论文精读] | Transformer

news2025/2/26 18:14:14

写在前面
 
最近工作从CV转向了NLP,于是空余时间便跟着哔哩哔哩李沐老师的视频学习。其实研一NLP课程讲论文的时候,我们小组就选择了经典的Attention和Bert,但还有很多细节并不完全理解,实际使用时也很困惑。
 
因此这个系列就来记录NLP复习知识!文章内容会结合工作实际所需持续更新。加油哇~

Transformer

        • 1. 简介和背景
        • 2. 相关工作
        • 3. 模型结构
          • 3.1 整体概览——编码器-解码器(Encoder-Decoder)
          • 3.2 注意力机制(Attention)
          • 3.3 "point-wise"前馈神经网络
          • 3.4 向量化层(Embedding)
          • 3.5 位置编码(Positional encoding)
        • 4. 为什么使用自注意力?(self-attention)
        • 5. 文章评价

1. 简介和背景
  • 论文的工作:聚焦于序列转录模型,序列转录模型是一类根据一个序列生成另外一个序列的模型,以往主流的方法通常基于RNN或者CNN、结构上采用Encoder-Attention-Decoder;提出的Transformer这种新的网络结构仅使用Attention机制。
  • RNN特点:能够处理序列数据的关键所在,是对输入序列从左到右依次进行计算,并将前面学到的知识放入隐藏状态向后传递
    • 这种计算机制带来的问题:
      • 无法并行计算
      • 当输入序列较长时,前面学到的知识在向后传递的过程中存在信息丢失的风险
    • 已有的提升计算效率的方法,如分解技巧,并不能从根本上解决问题
  • Attention机制在以往的工作中主要用来将Encoder的信息更好地传递给Decoder,论文提出的Transformer网络,不再使用循环层,仅使用attention学习输入和输出的全局依赖关系,而且能够有效进行并行计算

2. 相关工作
  • 减少时序计算代价途径之一——使用卷积神经网络
    • cnn的缺点在于难以建模长序列,每次计算使用的是k*k(k=3,5)的卷积核,如果需要建模两个距离较远的像素,需要使用多层卷积逐层计算;而Transformer中的注意力机制,每次计算使用全部像素;
    • 卷积的好处在于使用多个输出通道计算不同的特征,所以设计多头注意力机制进行模拟。
  • 自注意力机制:在计算一个序列表达时,将序列不同位置关联起来的一种注意力机制;已有工作并非论文创新。

3. 模型结构
3.1 整体概览——编码器-解码器(Encoder-Decoder)

Transformer基于经典序列转录模型的Encoder-Decoder架构:

  • 长度为n的输入x=(x_1, x_2,…x_n),如果是一个句子,x_t表示第t个单词
  • 编码器E:将输入映射为长度同样为n的连续向量z=(z_1, z_2,…z_n)
  • 解码器D:以编码器的输出z为输入,生成长度为m的输出序列y=(y_1, y_2, …y_m)
    • m可以不等于n,例如英翻中任务中,输入的英文句子长度可以不等于输出的中文句子长度
    • 解码器是典型的自回归模型,即逐步生成序列的每个元素来生成整个序列,生成y_t时考虑已经生成的y_1到y_(t-1),过去时刻的所有输出作为当前时刻的输入
      同时在编码器和解码器堆叠了多层self-attention、norm和fc

在这里插入图片描述

  1. 编码器
    在这里插入图片描述
  • batchnorm和laynorm
    在这里插入图片描述
  1. 解码器
  • 与编码器结构相似,包含6个完全相同的层,每层除了与编码器相同的两个子层(多头自注意力和前馈神经网络)外,增加一个额外的子层,同样是多头注意力
  • 由于解码器预测t时刻输出时,只能使用0到t-1时刻的输出作为输入,而t时刻后的不能;但注意力机制每次可以看到完整输入;因此使用带掩码的注意力机制–>保证训练和测试一致。
3.2 注意力机制(Attention)

简要理解:注意力函数将输入的 query,key-value 映射为输出output;具体来说,输出是value的加权和(二者维度相同),权重由query和key的相似度函数计算得出。其中不同的相似度函数则对应不同的注意力机制。

  1. 点乘注意力(Scaled dot attention)——TransFormer中使用的注意力机制
    在这里插入图片描述
  • quey的个数可以和kye-value对的个数不一样,但维度相同
  • 为什么要做缩放?当d_k较大时,点乘的值会变大,对应的softmat结果靠近1,使得梯度比较小
  • mask的目的——避免t时刻的query看到t时刻之后的key-value对;具体计算时,将t时刻之后的qk设置成较大的负数,经过softmax计算后变成0
  1. 多头注意力(Multi-Head attention)
    目的:模拟卷积神经网络不同输出通达学习不同特征
    做法:将QKV先投影到低维空间,投影h次–>缩放的点乘注意力机制–>拼接之后投影到原维度
    在这里插入图片描述

  2. Transformer中三种不同的注意力
    (1)Encoder中
    在这里插入图片描述
    (2)Dncoder中
    第一个注意力机制与Encoder相似,增加了mask机制:预测t时刻输出时,t时刻之后的权重设置为0
    第二个不再是自注意力,key-value对来自编码器的输出
    在这里插入图片描述

3.3 "point-wise"前馈神经网络
  • point-wise的意思:输入序列每个位置的词语都会经过相同的前馈神经网络计算
  • 两个线性层,使用Relu激活函数,将512维输入映射到2048维度后再映射回512维
  • 为什么是point-wise?注意力子层已经把输入的整个句子信息做了一次汇聚,使得注意力层输出的每个向量中都融合了其他位置信息(权重不同,感兴趣信息不同),因此每个位置词语对应的注意力子层输出向量可以单独进入前馈神经网络进行计算。
    在这里插入图片描述
3.4 向量化层(Embedding)
  • 整个网络包括三个向量化层,分别在编码器输入、解码器输入和解码器输出softmax层前。三者共享权重(训练简单)
  • 在编码器和解码器的输入部分,目的是将输入词映射成d_model向量;在解码器的输出部分,则是将隐藏状态的向量(eg:512维)映射到词汇表大小(eg:3万)的维度空间,然后进入softmax函数计算每个词概率值。

补充chatgpt的解释: Q:在decoder的softmax之前也会embedding,这是为什么呢?
A:在Transformer解码器中,在进行softmax之前进行额外的嵌入操作,通常是因为需要将解码器的输出(即经过softmax后的概率分布)转换为最终的词汇预测。这个额外的嵌入操作通常被称为"输出投影"(output
projection)或者"生成词嵌入"(generation embedding)。 这个额外的嵌入操作的作用有几个方面:

  1. 维度匹配:通常情况下,解码器的隐藏状态的维度可能与词汇表的大小不匹配。因为在解码器的隐藏状态中,每个时间步都有一个隐藏状态向量,而词汇表的大小通常远大于隐藏状态的维度。所以,需要通过输出投影将隐藏状态的维度转换为词汇表大小,以便之后进行softmax计算得到每个词汇的概率分布。
  2. 生成词嵌入:除了维度匹配之外,输出投影还可以被看作是将隐藏状态映射到词嵌入空间的过程。通过这个过程,模型可以更好地捕捉输出词汇的语义信息,从而更准确地预测下一个词汇。
    综上所述,在Transformer解码器中,在进行softmax之前进行额外的嵌入操作,既可以保证维度匹配,又可以提高模型对输出词汇的表示能力,从而提高预测的准确性。
3.5 位置编码(Positional encoding)
  • RNN是通过将上一时刻输出作为下一时刻输入来编码序列信息的,但注意力却缺少对时序信息的编码,针对这个问题,Transformer选择直接在输入中加入词语的位置信息。
  • 位置编码是一个与位置相关的向量,它被加到词嵌入向量中,以使模型能够区分不同位置的词汇。它通过周期不同的正弦、余弦函数计算而得,使得每个位置都会有一个唯一的位置编码向量与之对应。
4. 为什么使用自注意力?(self-attention)

虽然论文中这个章节标题是why self-attention,但并不是解释为什么这么设计,而是侧重时间复杂度、并行程度等相比RNN和CNN的优势
在这里插入图片描述

衡量三个维度

  • 每层的时间复杂度
  • 顺序计算:下一步计算必须等前面多少步完成计算,值越低并行程度越高
  • 最大路径长度:信息从一个点到另一个点要走多少步
    (1) 自注意力层:query矩阵n行d列,key矩阵n行d列,二者时间复杂度是n^2d;query和所有的key计算,输出是所有value的加权和,所以query一次就可以完成所有key-value计算,同时矩阵之间并行运算,所以每一步无需等待,信息传输一次完成。
    剩余三者计算量再补充

TODO:剩余循环层和卷积层计算之后遇到实际场景后再补充


5. 文章评价

论文写作:正文精简讲好一个故事,为什么要做?设计理念是什么?思考–>增加文章深度
模型本身:几乎可以用于所有NLP任务;扩展到图像、语音等领域;预训练让整个训练过程变的简单


2024.03.09 春日伊始,阳光明媚;在北京的小破出租屋,第一次更新:论文中Transformer基本结构。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1504788.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring学习 基础(三)MVC

5、Spring MVC 传统Web模式: Model:系统涉及的数据,也就是 dao 和 bean。View:展示模型中的数据,只是用来展示。Controller:处理用户请求都发送给 ,返回数据给 JSP 并展示给用户。 随着 Spring 轻量级开发…

【python】time库知识整理

简介 python的time库是python内置库,主要负责处理与时间相关的事务。 获取当前时间 函数作用time()获取当前时间戳ctime()获取字符串形式的时间gmtime()调用内部方法,赋予属性,能够被程序调用执行 time返回的是时间戳 ctime是返回的我们…

智慧安防视频远程监控平台EasyCVR集成后播放只有一帧画面是什么原因?

智慧安防视频监控平台EasyCVR能在复杂的网络环境中(专网、局域网、广域网、VPN、公网等)将前端海量的设备进行统一集中接入与视频汇聚管理,平台可支持的接入协议包括:国标GB28181、RTSP/Onvif、RTMP,以及厂家的私有协议…

Linux网络套接字之预备知识

(。・∀・)ノ゙嗨!你好这里是ky233的主页:这里是ky233的主页,欢迎光临~https://blog.csdn.net/ky233?typeblog 点个关注不迷路⌯▾⌯ 目录 一、预备知识 1.理解源IP地址和目的IP地址 …

Day27:安全开发-PHP应用TP框架路由访问对象操作内置过滤绕过核心漏洞

目录 TP框架-开发-配置架构&路由&MVC模型 TP框架-安全-不安全写法&版本过滤绕过 思维导图 PHP知识点 功能:新闻列表,会员中心,资源下载,留言版,后台模块,模版引用,框架开发等 技…

Android14之解决报错:No module named sepolgen(一百九十二)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

excel统计分析——嵌套设计

参考资料:生物统计学,巢式嵌套设计的方差分析 嵌套设计(nested design)也称为系统分组设计或巢式设计,是把试验空间逐级向低层次划分的试验设计方法。与裂区设计相似,先按一级因素设计试验,然后…

LeetCode-1004. 最大连续1的个数 III

每日一题系列(day 20) 前言: 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 &#x1f50…

【OpenCV】如何在Linux操作系统下正确安装 OpenCV

前言 我是在虚拟机上跑的 Linux 5.8.0-44-generic。 配置如下: 目录 第一步:下载依赖文件 第二步:下载 opencv 和 opencv_contrib 源码 第三步:解压缩包 第四步:移动文件 第五步:生成 makefile 文件 …

oracle基础-多表关联查询 备份

一、概述 在实际应用系统开发中会设计多个数据表,每个表的信息不是独立存在的,而是若干个表之间的信息存在一定的关系,当用户查询某一个表的信息时,很可能需要查询关联数据表的信息,这就是多表关联查询。SELECT语句自身…

Prometheus添加nginx节点显示不支持stub_status 解决办法

1、我们在使用Prometheus监控添加nginx节点监控的时候,在被监控节点的nginx配置文件中添加下面的模块 server { listen 80; server_name localhost; location /stub_status { stub_status on; access_log off; …

【解读】OWASP 大语言模型(LLM)安全测评基准V1.0

大语言模型(LLM,Large Language Model)是指参数量巨大、能够处理海量数据的模型, 此类模型通常具有大规模的参数,使得它们能够处理更复杂的问题,并学习更广泛的知识。自2022 年以来,LLM技术在得到了广泛的应…

网络触手获取天气数据存入mysql 项目

首先这个案例不一定能直接拿来用,虽然我觉得可以但是里面肯定有一些我没考虑到的地方。 有问题评论或者私信我: 这个案例适合我这种学生小白 获取天气数据网址: https://lishi.tianqi.com/xianyang/202201.html 网络触手获取天气数据代码直…

这是一段神奇的提示词,能直接调取Claude 3的系统提示词!附详细解读

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,所以创建了“AI信息Gap”这个公众号,专注于分享AI全维度知识…

第一代高通S7和S7 Pro音频平台:超旗舰性能,全面革新音频体验

以下文章来源于高通中国 如今,音频内容与形式日渐丰富,可满足人们放松心情、提升自我、获取资讯等需求。得益于手机、手表、耳机、车载音箱等智能设备的广泛应用,音频内容可以更快速触达用户。从《音频产品使用现状调研报告2023》中发现&…

蓝桥杯大赛软件python赛道真题:蛇形填数

真题链接:https://www.lanqiao.cn/problems/594/learning/ 题目描述: 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 如下图所示,小明用从1开始的正整数“蛇形”填充无限大的矩阵。 1 2 6 …

15:00面试,15:07就出来了,问的问题有点变态。。。

从小厂出来,没想到在另一家公司又寄了。 到这家公司开始上班,加班是每天必不可少的,看在钱给的比较多的份上,就不太计较了。没想到3月一纸通知,所有人不准加班,加班费不仅没有了,薪资还要降40%…

leetcode 热题 100_相交链表

题解一: 哈希表:两链表出现的第一个相同的值就是相交节点,因此我们先用哈希记录链表A所有出现过的值,再遍历链表B查找哈希表,找出第一个相同的值即为结果。 import java.util.HashSet;public class Solution {public …

实验二 Hello, miniEuler操作演示(保姆级教程)

PS:所有的批注都写在了块引用中,其他文字均为题干 print函数是学习几乎任何一种软件开发语言时最先学习使用的函数,同时该函数也是最基本和原始的程序调试手段,但该函数的实现却并不简单。本实验的目的在于理解操作系统与硬件的接…

DeepLearning in Pytorch|共享单车预测NN详解(思路+代码剖析)

目录 概要 一、代码概览 二、详解 基本逻辑 1.数据准备 2.设计神经网络 初版 改进版 测试 总结 概要 原文链接:DeepLearning in Pytorch|我的第一个NN-共享单车预测 我的第一个深度学习神经网络模型---利用Pytorch设计人工神经网络对某地区租赁单车的使用…