用Python实现一个简单的——人脸相似度对比

news2024/11/15 21:56:30

近几年来,兴起了一股人工智能热潮,让人们见到了AI的能力和强大,比如图像识别,语音识别,机器翻译,无人驾驶等等。总体来说,AI的门槛还是比较高,不仅要学会使用框架实现,更重要的是,需要有一定的数学基础,如线性代数,矩阵,微积分等。

幸庆的是,国内外许多大神都已经给我们造好“轮子”,我们可以直接来使用某些模型。今天就和大家交流下如何实现一个简易版的人脸对比,非常有趣!

整体思路:

1、预先导入所需要的人脸识别模型;

2、遍历循环识别文件夹里面的图片,让模型“记住”人物的样子;

3、输入一张新的图像,与前一步文件夹里面的图片比对,返回最接近的结果。

使用到的第三方模块和模型:

1、模块:os,dlib,glob,numpy;

2、模型:人脸关键点检测器,人脸识别模型。

第一步:导入需要的模型。

这里解释一下两个dat文件:

它们的本质是参数值(即神经网络的权重)。人脸识别算是深度学习的一个应用,事先需要经过大量的人脸图像来训练。所以一开始我们需要去设计一个神经网络结构,来“记住”人类的脸。

对于神经网络来说,即便是同样的结构,不同的参数也会导致识别的东西不一样。在这里,这两个参数文件就对应了不同的功能(它们对应的神经网络结构也不同):

shape_predictor.dat这个是为了检测人脸的关键点,比如眼睛,嘴巴等等;dlib_face_recognition.dat是在前面检测关键点的基础上,生成人脸的特征值。

所以后面使用dlib模块的时候,其实就是相当于,调用了某个神经网络结构,再把预先训练好的参数传给我们调用的神经网络。顺便提一下,在深度学习领域中,往往动不动会训练出一个上百M的参数模型出来,是很正常的事。

import os,dlib,glob,numpy
from skimage import io

# 人脸关键点检测器
predictor_path = "shape_predictor.dat"
# 人脸识别模型、提取特征值
face_rec_model_path = "dlib_face_recognition.dat"
# 训练图像文件夹
faces_folder_path ='train_images' 

# 加载模型
detector = dlib.get_frontal_face_detector()
sp = dlib.shape_predictor(predictor_path)
facerec = dlib.face_recognition_model_v1(face_rec_model_path)

第二步:对训练集进行识别。

在这一步中,我们要完成的是,对图片文件夹里面的人物图像,计算他们的人脸特征,并放到一个列表里面,为了后面可以和新的图像进行一个距离计算。关键地方会加上注释,应该不难理解。

candidate = []         # 存放训练集人物名字
descriptors = []       #存放训练集人物特征列表

for f in glob.glob(os.path.join(faces_folder_path,"*.jpg")):
    print("正在处理: {}".format(f))
    img = io.imread(f)
    candidate.append(f.split('\\')[-1].split('.')[0])
    # 人脸检测
    dets = detector(img, 1)
    for k, d in enumerate(dets): 
        shape = sp(img, d)
        # 提取特征
        face_descriptor = facerec.compute_face_descriptor(img, shape)
        v = numpy.array(face_descriptor) 
        descriptors.append(v)

print('识别训练完毕!')

当你做完这一步之后,输出列表descriptors看一下,可以看到类似这样的数组,每一个数组代表的就是每一张图片的特征量(128维)。然后我们可以使用L2范式(欧式距离),来计算两者间的距离。

举个例子,比如经过计算后,A的特征值是[x1,x2,x3],B的特征值是[y1,y2,y3], C的特征值是[z1,z2,z3]。

那么由于A和B更接近,所以会认为A和B更像。想象一下极端情况,如果是同一个人的两张不同照片,那么它们的特征值是不是应该会几乎接近呢?知道了这一点,就可以继续往下走了。

第三步:处理待对比的图片。

其实是同样的道理,如法炮制,目的就是算出一个特征值出来,所以和第二步差不多。然后再顺便计算出新图片和第二步中每一张图片的距离,再合成一个字典类型,排个序,选出最小值,搞定收工!

try:
##    test_path=input('请输入要检测的图片的路径(记得加后缀哦):')
    img = io.imread(r".\test_images\test6.jpg")
    dets = detector(img, 1)
except:
    print('输入路径有误,请检查!')

dist = []
for k, d in enumerate(dets):
    shape = sp(img, d)
    face_descriptor = facerec.compute_face_descriptor(img, shape)
    d_test = numpy.array(face_descriptor) 
    for i in descriptors:                #计算距离
        dist_ = numpy.linalg.norm(i-d_test)
        dist.append(dist_)

# 训练集人物和距离组成一个字典
c_d = dict(zip(candidate,dist))                
cd_sorted = sorted(c_d.items(), key=lambda d:d[1])
print ("识别到的人物最有可能是: ",cd_sorted[0][0])

这里我用了一张“断水流大师兄”林国斌的照片,识别的结果是,果然,是最接近黎明了(嘻嘻,我爱黎明)。但如果你事先在训练图像集里面有放入林国斌的照片,那么出来的结果就是林国斌了。

为什么是黎明呢?我们看一下输入图片里的人物最后与每个明星的距离,输出打印一下:

{‘刘亦菲’: 0.5269014581137407,

‘刘诗诗’: 0.4779630331578229,

‘唐艺昕’: 0.45967444611419184,

‘杨幂’: 0.4753850256188804,

‘迪丽热巴’: 0.5730399094704894,

‘郑秀妍’: 0.40740137304879187,

‘郑秀晶’: 0.45325515192940385,

‘郭富城’: 0.7624925709626963,

‘黎明’: 0.8925473299225084}

没错,他和黎明的距离是最小的,所以和他也最像了!

如果你对Python感兴趣,想要学习python,这里给大家分享一份Python全套学习资料,都是我自己学习时整理的,希望可以帮到你,一起加油!

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

1️⃣零基础入门

① 学习路线

对于从来没有接触过Python的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述

Python兼职渠道推荐

学的同时助你创收,每天花1-2小时兼职,轻松稿定生活费.
在这里插入图片描述

2️⃣国内外Python书籍、文档

① 文档和书籍资料

在这里插入图片描述

3️⃣Python工具包+项目源码合集

①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

4️⃣Python面试题

我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

上述所有资料 ⚡️ ,朋友们如果有需要的,可以扫描下方👇👇👇二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1502478.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Windows上websocket客户端连接定时存储消息到文件并加载文件定时发送服务端工具实现

场景 在业务开发中,需要对接三方websocket协议数据或者连接并存储线上websocket协议数据,需要使用websocket客户端 连接线上的websocket服务端获取并存储数据,然后将数据存储成文件格式可移植,并将数据复制 到本地,…

15. C++泛型与符号重载

【泛型编程】 若多组类型不同的数据需要使用相同的代码处理,在C语言中需要编写多组代码分别处理,这样做显然太过繁琐,C增加了虚拟类型,使用虚拟类型可以实现一组代码处理多种类型的数据。 虚拟类型是暂时不确定的数据类型&#…

免费的文案二次创作软件,打造高质量原创文案

在当今数字化时代,内容创作已经成为企业和个人推广自身品牌、产品和服务的重要手段。然而,对于许多人来说,撰写高质量的原创文案并非易事。幸运的是,随着技术的发展,出现了许多文案二次创作免费软件,为那些…

怎么做不限扫码次数的文件活码?文件可长期扫描展现下载

如何制作不限扫码次数的文件二维码呢?将文件转二维码后分享给其他人,是现在非常方便的一种文件传输方式。很多小伙伴在制作文件二维码的时候,比较担心的一个问题,就是二维码可以扫码的次数,担心达不到自己预期的效果&a…

保姆级讲解 Stable Diffusion

目录 本文讲解思路介绍 一、引入 二、Diffusion Model 三、原文的摘要和简介 四、Stable Diffusion 4.1、组成模块 4.2、感知压缩 4.3、条件控制 五、图解 Stable Diffusion 5.1、潜在空间的扩散 5.2、条件控制 5.3、采样 5.4、Diffusion Model 与 Stable Diffusion …

win11+wsl+ubuntu20.04+ros+x11+mobaxterm实现win11中ROS使用(含可视化)

前言 为实现在win11中使用ros… 一、win11中wsl(ubuntu20.04)安装 参考:Windows 11 安装 WSL2 主要步骤:开启虚拟化–>安装ubuntu20.04 安装后可能还是WSL1,可参考WSL1升级为WSL2进行升级。 二、使用鱼香ROS换源并更新 wget http://fishro…

【刷题记录】详谈设计循环队列

下题目为个人的刷题记录,在本节博客中我将详细谈论设计循环队列的思路,并给出代码,有需要借鉴即可。 题目:LINK 循环队列是线性表吗?或者说循环队列是线性结构吗? 对于这个问题,我们来看一下线…

Awesome-Backbones-main——alexnet模型分析

AlexNet作为骨干网络相对较老,可能在复杂数据集上的表现不如一些最新的深度网络结构,如ResNet、EfficientNet等,学习率调整策略中采用了阶梯式学习率更新器,可能并不总是适合所有数据集和模型,需要根据具体情况调整学习…

有名信号量、网络协议模型、UDP编程发送端

我要成为嵌入式高手之3月5日Linux高编第十五天&#xff01;&#xff01; ______________________________________________________ 学习笔记 有名信号量 1、创建semget #include <sys/types.h> #include <sys/ipc.h> #include <sys/sem.h> int semget(…

JVM 的垃圾回收机制以及垃圾回收算法的详解

目录 1、JVM 的垃圾回收机制 2、识别垃圾 2.1、引用计数 2.2、可达性分析 3、垃圾回收算法 3.1、标记-清除 3.2、复制算法 3.3、标记-整理 4、分代回收 1、JVM 的垃圾回收机制 对于&#xfeff;程序计数器&#xfeff;、&#xfeff;虚拟机栈&#xfeff;、&#xfe…

C if...else 语句

一个 if 语句 后可跟一个可选的 else 语句&#xff0c;else 语句在布尔表达式为 false 时执行。 语法 C 语言中 if…else 语句的语法&#xff1a; if(boolean_expression) {/* 如果布尔表达式为真将执行的语句 */ } else {/* 如果布尔表达式为假将执行的语句 */ }如果布尔表…

VMware Workstation17虚拟机安装

文章目录 一.下载安装软件二.安装过程选项三.序列化四.检查是否安装成功 一.下载安装软件 方式一&#xff1a;官网下载 方式二: 网盘下载(从官网里面下载的正版) 二.安装过程选项 双击下载的安装包&#xff0c;按以下图片选项进行安装 如果没有以下图片的"升级"选…

红队专题-开源漏扫-巡风xunfeng源码剖析与应用

开源漏扫-巡风xunfeng 介绍主体两部分:网络资产识别引擎,漏洞检测引擎。代码赏析插件编写JSON标示符Python脚本此外系统内嵌了辅助验证功能文件结构功能 模块添加IP三. 进行扫描在这里插入图片描述 ![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/de587a6f6f694…

SpringCloudGateway工作原理与链路图

SpringCloudGateway基本介绍 Spring Cloud Gateway 构建于Spring Boot 2.x、 Spring WebFlux和Project Reactor之上。因此,在使用 Spring Cloud Gateway 时,您可能不会应用许多熟悉的同步库(例如 Spring Data 和 Spring Security)和模式。 Spring Cloud Gateway 需要 Sprin…

超好用的一键生成原创文案方法

在现代社会中&#xff0c;原创文案不管是在营销中&#xff0c;还是在品牌推广中都起着至关重要的作用。然而&#xff0c;对于许多人来说&#xff0c;创作出令人印象深刻且引人注目的原创文案并不容易。但随着技术的发展&#xff0c;我们现在可以利用一键生成原创文案的方法来帮…

(3)应用与信息

文章目录 前言 3.1 FlightDeck FrSky发射器应用程序 3.2 MAVLink2数据包签名(安全) 3.3 MAVLink高延迟协议 3.4 无线地面站连接中继器 1 概述 2 组件 3 设置 3.5 遥测无线电区域条例 3.6 用于OpenTX的Yaapu遥测脚本 前言 FlightDeck FrSky Transmitter AppMAVLink2 …

GitHub会员充值

GitHub是一个基于Web的代码托管平台&#xff0c;为开发者提供了协作、版本控制和代码管理的工具。它允许个人和团队共同协作开发软件项目&#xff0c;并提供了许多功能&#xff0c;使得代码的管理和维护更加容易 版本控制系统&#xff1a; GitHub使用Git作为其版本控制系统。Gi…

使用MATLAB快速对波形进行傅里叶分解到有限次谐波

使用MATLAB快速对波形进行傅里叶分解到有限次谐波 目录 使用MATLAB快速对波形进行傅里叶分解到有限次谐波1、解析表达式分解到有限次谐波1.1、理论分析1.2、全部代码 2、数值波形分解到有限次谐波2.1、基础理论2.2、对应代码 很多时候对功率放大器设计阻抗空间的分析都是从波形…

初阶数据结构之---二叉树的顺序结构-堆

引言 今天要讲的堆&#xff0c;不是操作系统虚拟进程地址空间中&#xff08;malloc&#xff0c;realloc等开空间的位置&#xff09;的那个堆&#xff0c;而是数据结构中的堆&#xff0c;它们虽然名字相同&#xff0c;却是截然不同的两个概念。堆的底层其实是完全二叉树&#x…

数据结构之队列详解(C语言手撕)

&#x1f389;个人名片&#xff1a; &#x1f43c;作者简介&#xff1a;一名乐于分享在学习道路上收获的大二在校生 &#x1f648;个人主页&#x1f389;&#xff1a;GOTXX &#x1f43c;个人WeChat&#xff1a;ILXOXVJE &#x1f43c;本文由GOTXX原创&#xff0c;首发CSDN&…